
NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA

THESIS
ELECTE

i 2 61995

THE DESIGN OF A PROGRAMMABLE
CONVOLUTIONAL ENCODER USING

VHDL AND AN FPGA

by

Andrew H. Snelgrove

December 1994

Thesis Co-Advisors: Chin-Hwa Lee
Herschel Loomis

Approved for public release; distribution is unlimited

19950125 165

DISCLAIMER NOTICE

TfflS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY.

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 0704-0188

1i REPORT SECURITY CLASSIFICATION

UNCLASSIFIED
lb. RESTRICTIVE MARKINGS

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REFORT

Approved for public release;
distribution is unlimited.

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION

Naval Postgraduate School
6c. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000

6b. OFFICE SYMBOL
(If applicable)

ECE

7a NAME OF MONITORING ORGANIZATION

Naval Postgraduate School
7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000
8a. NAME OF FUNDING/SPONSORING

ORGANIZATION
8b. OFFICE SYMBOL

(If applicable)
9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM
ELEMENT NO.

PROJECT
NO.

TASK
NO.

WORK UNIT
ACCESSION NO.

11. TITLE (Include Security Classification)
THE DESIGN OF A PROGRAMMABLE CONVOLUTIONAL ENCODER
USING VHDL AND AN FPGA

12. PERSONAL AUTHOR(S)

Snelgrove, Andrew H.
13a. TYPE OF REPORT

Masters Thesis
13b. TIME COVERED

FROM TO

14. DATE OF REPORT (Yeai\MonthJ)ay)

December 1994
15. PAGE COUNT

120
16. SUPPLEMENTARY NOTATION

The views expressed in this thesis are those of the author and do not reflect the official policy or position of
the Department of Defense or the U.S. Government.

COSATI CODES
FIELD GROUP SUB-GROUP

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

Convolutional encoding, VHDL, FPGA top-down design, one-hot state
assignment

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Convolutional encoding is a Forward Error Correction (FEC) technique used in continuous one-way and real time communication links. It can provide substantial improvement in bit error

rates so that small, low power, inexpensive transmitters can be used in such applications as satellites and hand-held communication devices. This thesis documents the development of a

programmable convolutional encoder implemented in a Field Programmable Gate Array (FPGA) from Xilinx, Inc., called the XC3064 Logic Cell Array (LCA). The encoder is capable of coding a

digital data stream with any one of 39 convolutional codes. Because the LCA is used for the hardware implementation, the design can be changed or expanded conveniently in the lab. In

particularly flexible systems, several encoder designs can be stored in the system RAM each one being downloaded into the LCA under different circumstances. The encoder has a simple

microprocessor interface, a register file for storage of code parameters, a test circuit, and a maximum bit rate of about IS Mbits/s. Special design techniques like one-hot state assignment,

pipelining, and the use of redundant states are employed to tailor the hardware to the LCA architecture. Other ways to improve the output bit rate are suggested. The VHSIC Hardware Description

Language (VHDL) is used to model abstract behavior and to define relationships between building blocks before the hardware implementation phase.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT

fx] UNCLASSIFIED/UNLIMITED Q SAME AS RPT. [] DTIC USERS

21. ABSTRACT SECURITY CLASSIFICATION

Unclassified
22a. NAME OF RESPONSIBLE INDIVIDUAL

Lee, Chin-Hwa
22b. TELEPHONE (Include Area Code)

408-656-2190
22c. OFFICE SYMBOL

EC/Le

DD Form 1473, JUN 86 Previous editions are obsolete.

S/N 0102-LF-014-6603
SECURITY CLASSIFICATION OF THIS PAGE

Unclassified

Approved for public release; distribution is unlimited.

THE DESIGN OF A PROGRAMMABLE CONVOLUTIONAL
ENCODER USING VHDL AND AN FPGA

Author:

by

Andrew H. Snelgrove
Naval Air Warfare Center - Weapons Division

B.S., Rensselaer Polytechnic Institute, 1986

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING
from the

NAVAL POSTGRADUATE SCHOOL

December 1994-

Andrew H. Snelgrove

Approved by:

[erschel H. Loomis, Thesis' CorAdvisor

Michael A. Morgan, Chairman,
Department of Electrical and Computer Engineering

ABSTRACT

Convolutional encoding is a Forward Error Correction (FEC) technique used in

continuous one-way and real time communication links. It can provide substantial

improvement in bit error rates so that small, low power, inexpensive transmitters can be

used in such applications as satellites and hand-held communication devices. This thesis

documents the development of a programmable convolutional encoder implemented in a

Field Programmable Gate Array (FPGA) from Xilinx, Inc., called the XC3064 Logic Cell

Array (LCA). The encoder is capable of coding a digital data stream with any one of 39

convolutional codes. Because the LCA is used for the hardware implementation, the design

can be changed or expanded conveniently in the lab. In particularly flexible systems, several

encoder designs can be stored in the system RAM, each one being downloaded into the

LCA under different circumstances. The encoder has a simple microprocessor interface, a

register file for storage of code parameters, a test circuit, and a maximum bit rate of about

15 Mbits/s. Special design techniques like one-hot state assignment, pipelining, and the use

of redundant states are employed to tailor the hardware to the LCA architecture. Other

ways to improve the output bit rate are suggested. The VHSIC Hardware Description

Language (VHDL) is used to model abstract behavior and to define relationships between

building blocks before the hardware implementation phase.
Accesion For

NTIS CRA&I
DTIC TAB
Unannounced
Justification

□

By
Distribution /

in

Availability Codes

Dist

m
Avail and/or

Special

TABLE OF CONTENTS

I. INTRODUCTION 1

n. CONVOLUTIONAL ENCODING 3

A. INTRODUCTION 3

B. CONVOLUTIONAL CODES 4

C ENCODERS 4

D. CONNECTION VECTORS 5

E. CODING GAIN 6

III. ENCODER DESIGN DETAILS 9

A TOP-DOWN DESIGN 9

B. TOP-LEVEL OVERVIEW 10

C. DATAPATH H

1. MUX 12

2. SHIFTREG 12

3. DATAREG 12

4. GENERATOR 13

5. REGFTLE 13

D. CONTROL 14

1. LOADER 15

2. INENBLE 16

3. SEQUENCER 17

4. TEST 18

E. OPERATION 18

F. INTERFACE 20

IV

IV. VHDL AND SIMULATION 22

A. VHDL 22

1. Constructs 23

a. State Machines 23

b. Multiplexors 24

c. Implicit Storage Elements 25

B. SIMULATION 26

C. STIMULUS 27

V. FIELD-PROGRAMMABLE GATE ARRAYS 30

A. INTRODUCTION 30

B. XILINX XC3064 ARCHITECTURE 33

1. Configurable Logic Block 34

a. Multiplexors 34

b. Look-up Table 34

c. Storage Elements 36

2. Input/Output Block 36

3. Configuration Memory 39

4. Programmable Interconnect 39

a. General Purpose Interconnect 39

b. Direct Interconnect 39

c. Longlines 40

VI. STATE ASSIGNMENT 41

A. ONE-HOT vs. BINARY 41

B. LUT IMPLEMENTATION 43

C. EXPLOITING REDUNDANT STATES 46

VII. FPGA IMPLEMENTATION 49

A. OVERVIEW 49

B. IMPLEMENTATION FLOW 50

1. Schematic Capture 50

2. Functional Verification 50

3. LCA Implementation 52

a. LCA_EXPAND and EREL2XNF 52

b. XNFMAP 52

c. MAP2LCA 53

4. CLB Placement and Routing 53

a. Automatic Place and Route 53

b. Constraint Files 53

5. Functional Verification of Back-Annotated Design 54

a. LCA2XNF 54

b. LCAJITMING 55

C. PIPELINING 55

1. Pipeline Register Placement 56

D. DESIGN PERFORMANCE 58

1. Propagation Delay Estimation 58

2. APR Iterations 58

E. AUTOLOGIC 59

- F. BACK-ANNOTATION INTO VHDL CODE 60

VIII. CONCLUSION 61

APPENDIX A-VHDL SOURCE CODE 63

APPENDIX B - BEHAVIORAL TESTBENCH AND TIMING DIAGRAMS 79

VI

APPENDIX C - STATE DIAGRAMS FOR LCA IMPLEMENTATIONS OF
STATE MACHINES 85

APPENDIX D - SCHEMATIC DIAGRAMS FOR NON-PIPELINED
PROGRAMMABLE CONVOLUTIONAL ENCODER 88

APPENDIX E - SCHEMATIC DIAGRAMS FOR PIPELINED BLOCKS OF
PROGRAMMABLE CONVOLUTIONAL ENCODER 101

APPENDIX F - HARDWARE TESTBENCHES AND OUTPUT WAVEFORM 105

LIST OF REFERENCES 109

INITIAL DISTRIBUTION LIST Ill

vu

ACKNOWLEDGMENTS

I would like to thank my thesis advisor, Dr. Chin-Hwa Lee, and my second reader,

Dr. Herschel H. Loomis, for their guidance and patience during the development of the

programmable convolutional encoder. A special thanks goes to Mr. Dan Zulaica, who kept

temperamental workstations and old versions of software working harmoniously throughout

the course of the project. Many thanks also goes to him for entering the schematic diagrams

into the development system and helping to run countless simulations. This thesis would not

have been completed without Dan's help. Finally, I would like to thank my wife, Erin, for

her unwavering support, not only of this thesis, but also of the whole NPS experience,

including a forgotten birthday on November 15, 1993.

vm

I. INTRODUCTION

Convolutional encoding is a method of adding redundancy to a data stream in a

controlled manner to give the destination the ability to correct bit errors without asking the

source to retransmit. Convolutional codes, and other codes which can correct bit errors at

the receiver, are called forward error correcting (FEC) codes. Contrast convolutional

encoding with the common automatic repeat request (ARQ) error correction schemes

which require a second communication channel between the source and destination. The

receiver requests retransmissions from the source when it detects a bit error. The added

delays due to retransmission requests and the actual retransmissions degrade the throughput

of the communication link. Convolutional codes add reliability to the link while eliminating

the need for a reverse channel. They are used in applications where retransmission of data is

impractical or impossible, such as in space probes, or in broadcast satellites that transmit to

multiple receivers simultaneously (Stallings, 1994, p. 149), or in real time speech

transmissions.

This thesis leads the reader through the entire design cycle of a programmable

convolutional encoder that can be utilized in many different systems that use various

convolutional codes. First, it explains the basics and advantages of convolutional encoding

in Chapter II. Chapter III then describes the top-down design paradigm and breaks down

the programmable encoder design into smaller building blocks, detailing the behavior of

each block as it proceeds. After all of the blocks and their interconnectivity and interaction

are defined, the chapter concludes with an example of the blocks working together as one

unit. Chapter IV covers the VHDL source code used to model and simulate the encoder in

an abstract, behavioral context. No hardware details are defined. Chapter V discusses Field

Programmable Gate Arrays (FPGAs) in general, their limitations, and their advantages. It

then gives a detailed treatment of the Xilinx XC3000 family of "Logic Cell Array", Xilinx

Corp.'s name for "FPGA". The design described in this thesis will be implemented in a

Xilinx XC3064 LCA. After the peculiarities of FPGAs are described, Chapter VI explains

the one-hot state assignment technique, why it works better than conventional highly

encoded state assignments, and how to use it to force flip-flop fan-in logic into a single

FPGA logic block. The chapter uses one of the state machines of the encoder design to

illustrate the method. Finally, Chapter VII describes the Xilinx development system and its

various CAD programs. It also explains how simulation was used to estimate speed

performance of the design and how pipeline registers were inserted into several blocks to

improve combinational delay times and hence clock rate. The chapter concludes with a few

comments about the Mentor Graphics Autologic tool and about the idea of back annotating

performance data into the VHDL code. Neither the Autologic tool nor the back annotating

idea proved useful in this work.

H. CONVOLUTIONAL ENCODING

This chapter presents the basics of convolutional encoding including its location in the

communication link, how convolutional codes are described and implemented, and the

benefits of using them.

A. INTRODUCTION

Figure 2.1 shows a basic communication link using convolutional encoding. An

information source generates a sequence of message bits, m, and feeds them into a

convolutional encoder. The encoder produces a sequence of coded bits, U, which modulates

a waveform. The waveform, s;(t), travels through a channel where it is corrupted by

additive white Gaussian noise (AWGN). The corrupted signal, s'i(t), is demodulated to

recover the coded bits, Z, which contain bit errors because of the AWGN. The

convolutional decoder then takes advantage of the redundancy added by the code to correct

bit errors, producing an estimate of the original bit stream, m\ The estimate is very close, if

not identical, to the original, m. (Sklar, 1988)

1 nformation
source

Convolutional
encode Modulate

/ ' / ' /

Inoutsec

/
.., mi(...

luence
U

/
«G(m>
= u„u,,. ...U,....

{s (t)} 1 '

Codeword sequence
where Uj - U-IJ, ..., ujjf.. ., uni

AWGN
channel

Information
sink

Convolutional
decode

Demodulate
'/ 7 \

m = n"ij, nr»2,
/

1

• *| "Ttjf • * • Z
/

-Zl.Z2.. ...z {S|(1 t)}

Figure 2.1. Relationship of encoding/decoding in a communication link.
(Sklar, 1988, p. 316)

B. CONVOLUTIONAL CODES

Convolutional codes are forward error correcting codes which take a group of k

information or message bits, called a k-tuple, and maps it into another group of» code bits

called an n-tuple. Each «-tuple is determined by the most recently arrived *-tuple and the

L-l previously arrived ^-tuples. The codes are described by a fraction kin, called the rate,

and L, called the constraint length.

C. ENCODERS

Figure 2.2 shows the structure of a convolutional encoder. Message bits arrive as

^-tuples at one end of a series of L serial shift register stages, each stage holding one

*-tuple. Each of the L ^-tuples helps determine the n-tuple. With more stages (i.e., a longer

constraint length, L), each it-tuple influences more «-tuples, increasing the amount of

redundancy contained in the output coded bit stream. The parallel outputs of the registers

feed « modulo-2 adders via a bank of AND gates, the purpose of which is described in the

h -Lk stag« -

k
i 2 k 1 2 *

information
bits

Figure 2.2. Generic convolutional encoder. (Proakis, 1989, p. 443)

next section. Each adder consists of an L^-input XOR tree symbolized by the circled "plus"

sign and outputs one bit of the «-tuple. The one-bit outputs of the n modulo-2 adders are

delivered sequentially to the modulator as a convolutionally encoded bit stream.

Figure 2.3 shows an example of a rate 2/3 convolutional encoder with a constraint

length L = 2. Notice the following: (1) the encoder has two stages because 1 = 2, (2) each

stage holds two bits because k = 2, and (3) there are three modulo-2 adders because

w = 3.

D. CONNECTION VECTORS

In Figures 2.2 and 2.3, a solid line or arrow between a shift register and a modulo-2

adder represents a connection between the corresponding bits. Thus, in Figure 2.3, for

adder number 3 there is a connection between shift register bit number 3 and adder input bit

number 3. Similarly, there is also a connection between shift register bit number 1 and adder

input bit number 1. The serial input end of the shift register is considered most significant.

Figure 2.3. Rate 2/3, L = 2, convolutional encoder. (Proakis, 1989, p. 445)

An absence of a line or arrow indicates that there is no connection. In practice, the

connectivity between the shift register and the adders is expressed with connection vectors.

Each adder has an Lk-bit connection vector, g, associated with it (Sklar, 1988, p. 318). A '1'

in the /-th position of the vector represents a connection between the /-th bit of the shift

register and the /-th bit of the adder input, whereas a '0' represents no connection.

Connection vectors are written as octal numbers. In Figure 2.3, there are three 4-bit

connection vectors: (1) gi = 1011, written as 138, (2) & = 1101, written as 158, and (3) gj

= 1010, written as 128. In hardware, the contents of the shift register is bitwise ANDed with

all of the n connection vectors. The outputs of the AND gates are then modulo-2 added

together to arrive at a single bit of the «-tuple. Thus, each adder has Lk AND gates feeding

its inputs. Figure 2.4 shows the hardware needed to generate one bit of the «-tuple.

E. CODING GAIN

Coding gain is the difference in Eb/No required to achieve the same probability of bit

error, PB, between a coded transmission and an uncoded transmission over the same channel

using the same modulation technique (Sklar, 1988, p. 345). Eb is the average signal energy

per bit (Sklar, 1988, p. 156) and N0 is noise power spectral density of white noise (Sklar,

1988, p. 345). Table 2.1 lists the required Eb/N0to achieve three different values of pB. For

each PD it also lists the coding gain provided by various convolutional code rates and

constraint lengths. Constraint length is denoted by K rather than L in this table.

Significant coding gain can be achieved with a fairly simple code. For example, Table

2.1 lists a gain of 6.2 dB when a rate 1/3, constraint length 7, code is used to achieve a

probability of bit error of 10"7. Without coding, the required Eb/N0 to achieve the same pB

isl 1.3 dB; whereas, with coding, the required Eb/N0 drops by 6.2 dB. This implies that the

required transmitter power for the coded communication link is less than 25% of the

transmitter power needed for the uncoded link to achieve the same probability of bit error.

TABLE 2.1. CODING GAINS (dB) FOR SEVERAL BIT ERROR PROBABILITIES.

Uncoded
E„INo

Code rate i i ! 1

(dB) P* K 1 8 5 6 7 6 8 6 9

6.8 10-' A.l 4.4 3.3 3.5 3.8 2.9 3.1 2.6 2.6
9.6 io-J 5.7 5.9 4.3 4.6 5.1 4.2 4.6 3.6 4.2

11.3 io-7 6.2 6.5 4.9 5.3 5.8 4.7 5.2 3.9 4.8
Upper bound 7.0 7.3 5.4 6.0 7.0 5.2 6.7 4.8 5.7

In a more practical sense, lower transmitter power implies smaller, lighter, cooler, more

reliable, portable electronics packages.

Notice the trends in the gains listed in the table. Coding gain increases for the lower

code rates because the proportion of output coded bits to input message bits is larger. A

higher proportion places more redundancy in the coded bit stream. Consequently, a lower

transmitter power is adequate for the same probability of bit error, and, therefore, a higher

coding gain is established. Similarly, within a code rate, coding gain increases with

constraint length because longer constraint lengths imply that more ^-tuples affect each

w-tuple. With each «-tuple determined by a larger set of ^-tuples, more redundancy is added

to the coded bit stream.

HL ENCODER DESIGN DETAILS

This chapter begins the discussion of the programmable convolutional encoder design.

First, it touches on the top-down design paradigm and then presents a list of useful features

which a programmable encoder should have. Second, it shows how the design is partitioned

into building blocks providing a detailed behavioral description of each block. Finally, the

chapter uses an example code rate of 3/5 and a simplified timing diagram to describe how

the blocks interact to produce a complete encoder.

A. TOP-DOWN DESIGN

The top-down approach allows the designer to simulate, debug, and evaluate different

variations of the overall design without implementing anything in hardware. It begins with

describing a system's behavior at a high level of abstraction without regard to any hardware

details. As the system develops, each subsystem is broken down into a hierarchy of ever

smaller and simpler building blocks, all of whose behavior is defined abstractly with a

hardware description language (HDL). Hardware considerations such as target technology,

state assignments, etc., are not important at this stage. Only the functional descriptions of

the blocks and their interconnectivity matter. When all blocks and their interactions have

been defined, hardware implementation of each block proceeds.

The benefit of the approach is that designs are evaluated without bogging down in

hardware details, and system level bugs can be discovered and fixed early in the design

cycle. In addition, the HDL code and simulator output waveforms document the required

behavior of the target hardware. They also provide a means of documenting upgrades to the

system throughout the system's lifecycle.

B. TOP-LEVEL OVERVIEW

There are three main constraints imposed on the programmable convolutional encoder

design: (1) it must have the ability to encode serial data streams with many combinations of

k, n, and L, (2) its coding parameters must be adjustable via a microprocessor data bus, and

(3) it must be implemented in a Field Programmable Gate Array. Absolute data rate is not a

concern for the purposes of this thesis, but the implementation takes advantage of the FPGA

architecture to enhance speed. FPGA implementation is covered in a later chapter.

Given the first two design requirements and the structure of a generic convolutional

encoder, the design must have, at a minimum, the following architectural features:

1. An 8-bit data bus and a handshaking mechanism for writing code
parameters to the device,

2. a register file to hold code parameters,
3. one AND/XOR tree for each connection vector,
4. an input shift register for message bits,
5. a special shift register to shift ^-tuples of message bits through the

encoder,
6. a state machine to control the incoming message bits,
7. a state machine to control the £-tuple shift register,
8. a state machine to control the outgoing coded bits, and
9. a test circuit and input multiplexor.

Figure 3.1 shows a block diagram of the design. It consists of nine sub-blocks:

IN_ENBLE, SHIFTREG, LOADER, DATAREG, GENERATOR, SEQUENCER, TEST,

MUX, and REGFILE. The architectural features listed above reside in the block that has a

corresponding number in the lower left corner.

The datapath blocks are clocked on the falling edge of the system clock, while the

control blocks (dotted outlines) are clocked on the rising edge. Both clock edges are used

to make the output bit rate equal to the clock frequency. If one edge was used exclusively,

then the clock frequency would have to be doubled to get the same output bit rate. The

10

encoder has a global asynchronous reset, "reset", and a global clock, "elk", not shown in

Figure 3.1.

TEST
. t«t_vectM<7:0) ,

scrialinpul, MUX

DATA(7:0) *■

AS—►
select(2:0) / ►

REGFILE
(8x8)

1,2

 ►DTACK

-/-*■ n(2:0)

«2:0)

SHIFTREG
paralleloutO
 f ►

i (6x8)

DATAREG
k_vect(7:0)

GENERATOR

IN ENBLE <
load

load

LOADER

i mod2_sums(6:l)

SEQUENCER serial out

\
k(2:0)

i
n(2:0)

Figure 3.1. Block diagram of the convolutional encoder.

Because of their serial nature, convolutional encoders lend themselves well to a pipeline

architecture that allows the encoder to input message bits, convert them to code bits, and

output them simultaneously. The idea behind pipelining is to have several independent

stages working on different sets of data concurrently. The output of one stage becomes the

input to the next stage. In this convolutional encoder design, serial message bits move

through the SHIFTREG block and land in the DATAREG block while the SEQUENCER

block sends code bits from the GENERATOR block to the "serial_out" port. Detailed

descriptions of these blocks appear later in this chapter.

C. DATAPATH

The datapath consists of the blocks SHIFTREG, DATAREG, and GENERATOR.

Refer to Figure 3.1. Although SEQUENCER is considered a control block, it does serve a

datapath function because it acts like a multiplexor that selects bits from "mod2_sums(6:l)".

11

The details of SEQUENCER are presented in a later section.

In a nutshell, the datapath operates as follows. SHIFTREG, a serial to parallel shift

register latches k serial message bits. At the appropriate time, these message bits are placed

into DATAREG in parallel where they become part of Mk_vect(7:0)H, the DATAREG

output. GENERATOR combines "k_vect(7:0)H with six connection vectors and delivers six

bits in parallel, "mod2_sums(6:l),,
) to SEQUENCER. Based on the value of Hn(2:0)",

SEQUENCER selects the appropriate bits and sends them serially to the output,

"serial_out". What follows detailed behavioral description of each datapath block.

1. MUX

The MUX block is a 2-to-l multiplexor which selects either "serial_input" or a test

pattern to be the serial input of SHIFTREG. Its selection control signal is "test" which is

one bit of one of the registers in REGFILE. When "test" is high, the test pattern is fed into

SHIFTREG; otherwise, "serialjnput" is fed into SHIFTREG.

2. SHIFTREG

This block is an ordinary 4-bit serial-in/parallel-out shift register. Its inputs are

"serialjnput", "reset", "en", and "elk". Message bits enter the convolutional encoder

through "serialjnput". "En" enables SHIFTREG long enough to shift a #-tuple of message

bits. SHIFTREG's outputs, "parallel_out[4..1]", are simply the parallel version of the serial

input, and they feed the four parallel inputs of DATAREG.

3. DATAREG

The DATAREG block is a specialized 8-bit shift register which loads and shifts its

input in ^-tuples. In effect, the contents shift by one *-tuple with a single clock edge. For

example, if k = 2, then bits 4 and 5 shift two places to become bits 6 and 7, 2 and 3 become

4 and 5, 0 and 1 become 2 and 3, and the next two input bits become bits 0 and 1.

DATAREGs inputs are "load", Hk(2:0)", "elk", "reset", and "in(7:4)", and its output is

12

"k_vect(7:0)". "K(2:0)" is a binary number representing the number of bits per £-tuple.

"In(7:4)" are the outputs from SHIFTREG. In the block diagram, "in(7:4)" is shown as

"parallel_outO" because two different port names were used for the same signals as VHDL

source code was developed. Ideally, only one name should be used. HK_vect(7:0)" is the

8-bit contents of DATAREG, which, along with the connection vectors of the

GENERATOR block, determines the coded bits in "mod2_sums(6:l)M.

4. GENERATOR

GENERATOR is the only combinational logic block of the encoder design. It

calculates the "mod2_sums(6:l)" vector which determines the output code sequence.

GENERATOR'S inputs are the six connection vectors, "gl" through Hg6" and "k_yect(7:0)"

from DATAREG. It logical ANDs each of the six connection vectors with "k_vect(7:0)H

and modulo-2 adds (XORs) the elements of each resulting vector to produce the

"mod2_sums(6:l)" vector for the SEQUENCER block. Note that the constraint length, L, is

inherent in the choice of generator vectors. Because they are eight bits wide, they can

provide a constraint length of 8 or less for k = 1, 4 or less for k = 2, and 1 or 2 for either

* = 3or* = 4.

5. REGFILE

This block is a register file with eight 8-bit registers and a state machine,

HANDSHAK, that provides the handshaking mechanism. Six of the registers, register 1

through register 6, hold the six connection vectors. Register 0 holds "k(2:0)" in bits 2

through 0, "n(2:0)" in bits 5 through 3, and the "test" control bit in bit 6. Each register

enable comes from a 3-to-8 decoder output which is the decoded equivalent of the 3-bit

"select(2:0)" bus. The address strobe, AS, uses the enable input on the decoder to allow one

of the eight decoder outputs to select the target register.

The handshaking mechanism is controlled by HANDSHAK, a Moore machine

13

clocked on the rising edge of the system clock. The state diagram is shown in

Figure 3.2. When AS is asserted (low) by the microprocessor, the state machine output

ASout goes high for one clock cycle, enabling the target register for writing. The register

!AS

igure 3.2. State diagram for HANDSHAK.

latches the data on the falling clock edge after which the DTACK signal asserts low and

stays there until AS is inactive (high). The handshaking mechanism is patterned after the

68000 family of microprocessors (Clements, 1992, p. 181).

D. CONTROL

The control blocks consist of IN_ENBLE, LOADER, and SEQUENCER. LOADER

produces the active low signal "load". It divides the clock by n and provides a low pulse

every n clock periods. When "load" is active, it allows DATAREG to take in another

*-tuple from SHIFTREG. It also gives the IN_ENBLE block a synchronization signal.

IN_ENBLE's sole function is to enable SHIFTREG with "en", which stays high long enough

for SHIFTREG to input one yt-tuple. "En" is active high. SEQUENCER selects the lowest

significant n bits from "mod2_sums(6:l)" and sends them to "serial_out", the output of the

convolutional encoder. Meanwhile, IN_ENBLE allows the entry into SHIFTREG of the k-

tuple that Will produce the next «-tuple. When "load" activates again, the new *-tuple is

14

loaded into DATAREG and new values of the "mod2_sums(6:l)" vector appear at

SEQUENCER'S input.

1. LOADER

LOADER is a Moore machine which divides the system clock by n and provides the

"load" signal to DATAREG and INENBLE. Its inputs are "n(2:0)H, "elk", and "reset".

"N(2:0)H is the binary representation of the number of code bits sent in one «-tuple. It can

have a value from two through six. The unused values n = 0 and n = 1 default to n = 2, and

the unused value n = 7 defaults to n = 6. "Load" enables the parallel loading function of

DATAREG every n clock cycles. This block must divide the system clock by n because the

input bit rate must be multiplied by n to account for the extra bits added to the bit stream in

the coding process. Since the output bit rate is fixed at the system clock rate, dividing the

Figure 3.3. State diagram for LOADER block.

clock by n and loading the input bit groups at the divided rate achieves the same result. This

15

approach also eliminates the need for a phase-locked loop clock multiplier for the output bit

stream, allowing the design to reside in an FPGA.

Figure 3.3 shows the state diagram. The machine resets to si. The output, "load", is

high (inactive) in all states except si. After n clock transitions, it ends up in si with "load"

active. For instance, assume the machine is in si and n = 4. After every fourth rising clock

edge, LOADER will be in si forcing "load" low. Effectively, LOADER divides the clock

rate by four.

2. IN_ENBLE

This block is a Moore machine which counts the number of clock cycles necessary

to keep "en" high long enough for SHIFTREG to input k message bits (one £-tuple).

IN_ENBLE takes the signals "elk", "load", "reset", and "k(2:0)" as inputs. K can have only

four values and could have been encoded in two bits. However, using the 3-bit binary

representation for the values of k is less confusing for the user of the encoder and has little

cost impact on the overall design. This approach also leaves a bit in place to accommodate

future enhancements to the encoder design which could handle more than four message bits.

The unused value of k = 0 defaults to k = 1, and the unused values k > 4 default to k = 4.

"Load" is the output of LOADER. INJBNBLE uses this signal to synchronize its activity

with LOADER.

As the state diagram, Figure 3.4, shows, IN_ENBLE stays in state sO with "en"

inactive until the "load" signal is active (low). This feature guarantees that IN_ENBLE

allows SHIFTREG to begin taking new input immediately after "load" latches a *-tuple into

DATAREG Once "load" is active, INJENBLE activates "en" for k clock cycles. Within

these k cycles are k falling clock edges that SHIFTREG uses to latch k message bits.

16

Figure 3.4. State diagram for IN_ENBLE block.

3. SEQUENCER

The SEQUENCER block is a Mealy machine that traverses through n states

selecting bits from "mod2_sums(6:l)" for output from the convolutional encoder.

"mod2_sums(6:l)" is the vector containing the six modulo-2 sums resulting from the

GENERATOR block. The block's other inputs are "n(2:0)", "reset", "load", and "elk".

"n(2:0)H is a binary number representing the number of code bits in one w-tuple.

Figure 3.5 shows the SEQUENCER state diagram. It selects the output bits in order

from low index to high index. Thus, if n = 3, the state machine will traverse through states

si, s2, and s3 repeatedly, selecting the correspondingly indexed bit from the

Hmod2_sums(6:l)" vector. In this case, it would select "mod2_sums(l)", "mod2_sums(2)",

and "mod2_sums(3)". As in the LOADER block, the unused values n = 0 and n = 1 default

to n = 2, and the unused value n = 7 defaults ton = 6.

17

xxx/O

xx/m(l)

(000+
001+ / X
0l0ym(2) / \

s2

lOll'mO)

Figure 3.5. State diagram for SEQUENCER block.

mO - mod2_sumsO

!(0O0+O0l+010Vm(2)

4. TEST

The TEST block consists of an 8-to-l multiplexor whose selection and enable bits

are controlled by a 4-bit binary counter. The counter cycles through the eight inputs of the

multiplexor on its first eight of sixteen state transitions. It forces the multiplexor output to

zero during the second eight transitions, filling SHIFTREG with zeros. This is needed to

obtain the correct output sequence that corresponds to the input test pattern. The eight

inputs to the multiplexor come from *'test_vector(7:0)" which is the test pattern stored in

register 7 of REGFILE.

E. OPERATION

Figure 3.6 shows a simplified timing diagram to clarify the operation of the encoder. The

vertical lines lettered A through J correspond to each step the encoder executes as it inputs

18

a Jt-tuple and simultaneously outputs an «-tuple. For this example, the encoder is set up for

a 3/5 code, and the *-tuple entering the encoder is "101". The MSB enters first. At the start

of the example, the contents of DATAREG and SHIFTREG are all 'x*s representing ^-tuples

which have not yet completed their journey through the encoder. This example looks at the

operation of the encoder in midstream.

Figure 3.6. Simplified timing diagram for the convolutional encoder set up for a 3/5 code

A. DATAREG is disabled ("load" is high), SHIFTREG is enabled ("en" is
high), and all state machines advance 1 state. The contents of DATAREG
and SHIFTREG are all 'x's (previous bit arrivals).
B. SHIFTREG latches the 1st bit of the *-tuple (T), SEQUENCER
outputs the 1st bit of the previous «-tuple (mod2_sums(l)). The contents
of SHIFTREG is now "lxxx".
C. All state machines advance 1 state.
D. SHIFTREG latches the 2nd bit of the Jt-tuple ('0'), SEQUENCER
outputs the 2nd bit of the previous «-tuple (mod2_sums(2)). The contents
of SHIFTREG is now "Olxx".
E. All state machines advance 1 state.
F. SHIFTREG latches the 3rd and final bit of the *-tuple (T),
SEQUENCER outputs the 3rd bit of the previous «-tuple (mod2_sums(3)).
The contents of SHIFTREG is now "lOlx".
G. SHIFTREG is disabled ("en" is low), all state machines advance 1 state.

19

H. SEQUENCER outputs the 4th bit of the previous «-tuple
(mod2_sums(4)). The contents of SHIFTREG does not changed.
L DATAREG is enabled ("load" is low), all state machines except
IN_ENBLE advance 1 state; IN_ENBLE remains in state sO waiting for
"load" to go high for synchronization of its actions with those of
LOADER.
J. DATAREG loads the *-tuple ("101") from SHIFTREG. It now
contains "lOlxxxxx". The new value in DATAREG causes
Hmod2_sums(6:l)" to change. SEQUENCER outputs the 5th and final
code bit from the previous value of mod2_sums(5), completing the output
of the previous w-tuple. The encoder goes back to step A where it begins
outputting the new w-tuple consisting of the lowest significant five bits of
the new value of "mod2_sums(6:l)H. It also begins inputting a new £-tuple.

F. INTERFACE

The device will need the following pin functions to interface with any external system in

which it is a component:

1. system clock, "elk", (input pin),
2. global reset, "reset", (input pin),
3. an input port for serial message bits, "serialjnput", (input pin),
4. an output port for serial code bits, "serial_out", (output pin),
5. 8-bit port for the data bus, "data(7:0)H, (input pins),
6. address strobe, "AS", used in handshaking (input pin),
7. data transfer acknowledge, "DTACK", for handshaking, (output pin),
8. "en" and "load" for coordinating message input/code output, (output pins)
9. miscellaneous ports for testing/monitoring intermediate signals (output pins).

The user must feed message bits to the encoder in serial bursts so that k bits are

available when "en" is high. Therefore, the user should use "en" as a synchronizing input to

whatever circuitry precedes the convolutional encoder. An asynchronous I/O First-In-First-

Out (FIFO) memory would be the most appropriate structure to hold incoming message bits

because it would accept incoming message bits at a constant rate while the encoder removes

them in bursts of one *-tuple while "en" is active. For a one-chip solution, a register based

FIFO could be implemented in the FPGA along with the encoder design. Thus the input bit

20

stream would be decoupled from the encoder input, and the buffering of message bits would

not be the user's worry.

In addition to "en", the signal "load" is also provided as an output for the user to utilize

as necessary for interfacing. For troubleshooting purposes, "k_vect(7:0)H and

"mod2_sums(6:l)H should also be brought to output pins. These pins can be eliminated after

the system is fully tested.

The next chapter deals with VHDL and high level simulation to confirm the correct

operation of the programmable convolution^ encoder before hardware implementation

begins.

21

IV. VHDL AND SIMULATION

This chapter briefly discusses the VHSIC Hardware Description Language (VHDL) and

how it was used to simulate and verify the proper behavior of the encoder design. A few

aspects of VHDL dealing with hardware implications of the code and a stimulus block are

described. A method to determine correct coded bit sequences is also discussed.

A. VHDL

VHDL is the IEEE and DOD standard for defining system behavior. It has several

advantages in support of top-down design. Since it is a standard HDL, it provides a reliable

communication medium for transferring design information and specifications between and

within design groups. Also, different groups do not need to use the same CAD suite as long

as their CAD environment supports VHDL simulation. It is not limited to descriptions of

one particular technology, and its wide range of descriptive capability allows one to write

accurate models both at the subsystem level and at the gate level. Thus, models of

subsystems written on different levels of abstraction can coexist in the same simulation of a

system under development. As more detailed models are completed, they can be verified

simply by plugging them into the overall system model and resimulating (Lipsett,1989, p.3).

No module of the system must be completed before another module can be inserted and

debugged because the abstract behavioral models substitute for modules whose hardware

details are not yet available. The schematic diagram and VHDL files for the encoder are in

Appendix A.

Presenting VHDL in any detail is beyond the scope of this thesis. Therefore, it is

assumed that the reader has a basic understanding of the various description styles and

syntactical constructs of the language. Of these, only a few are used in the convolutional

encoder model, and they are presented along with their hardware embodiments. Keep in

22

mind that even though a translation is made from VHDL code to a conceptual hardware

block, the actual hardware details are still immaterial at this stage in the design cycle.

Behavioral description is the only concern. For the interested reader, two good VHDL texts

are listed in the List of References. One is Lee, 1992, and the other is Lipsett, 1989.

1. Constructs

Of the three styles of architectures used in VHDL descriptions, the behavioral and

dataflow constructs were the only two used. The structural style is most conveniently used

at the top level of the design hierarchy. Since this style is basically the text form of a

schematic diagram, an actual schematic diagram was chosen as the top level documentation

of the encoder design. This approach provides the designer with a convenient graphical

format of the design and nicely compliments the trace window of the Mentor Graphics

Quicksimll simulator. With the schematic in view inside the Quicksimll environment,

graphical blocks can be opened to gain access to internal signals for simulation while

keeping the top level schematic in view. Schematic diagrams also make it easier for people

unfamiliar with the design to see the overall structure and data flow.

a. State Machines

There are two ways to model a state machine in VHDL. The first is to use one

process and define every state and output transition within that process. The second, which

is the one chosen for the convolutional encoder model, is to separate the state transitions

and outputs into two different processes referred to here as the "state" process and the

"output" process. The state process has the clock and reset in the sensitivity list and defines

only state transitions. The output process is either a concurrent selective signal assignment

statement with the state as the selecting signal, or it is a concurrent PROCESS statement

having only the state in the sensitivity list. This structure works well for both Mealy and

Moore machines. The only difference is that the Mealy machine has signals as

23

Listing 4.1. Excerpt from SEQUENCER state machine source code (Appendix A).
s:PROCESS(clk, reset)
BEGIN

IF (reset = '0') THEN -- asynchronous reset.
state <= state_0;

ELSIF (clkEVENT AND elk = T) THEN - state machine transitions on
CASE state IS -- rising clock edge.

WHEN state_0 => ~ go to state_l regardless of the inputs.
state <=state_l;

WHEN state_l => ~ go to state_2 regardless of the inputs.
state <= state_2;

WHEN state_2 =>
IF (n = "000" OR n = "001" OR n = "010") THEN

- if n is less than or equal to 2,
state <= state_l; - go to state_l.

ELSE
state <= state_3; ~ more than 2 bits/n-tuple.

END IF;
WHEN state 3 =>

inputs to the selective signal assignment or PROCESS statement's sensitivity list, whereas

the Moore machine has constant literal values. Listing 4.1 is an excerpt from the state

process of the SEQUENCER block. The state transitions are a function only of n(2:0), and

a state transition is triggered only on a rising clock edge or an asynchronous reset. The

complete VHDL source code for the SEQUENCER block and the other blocks is in

Appendix A. Additionally, the VHDL code was written based upon the state diagrams

described in the previous chapter. Refer to them if necessary to trace through the VHDL

code.

b. Multiplexors

Listing 4.2 is an excerpt from the output process of the SEQUENCER block. As

mentioned above, it describes the output signal transitions of the SEQUENCER state

24

machine, and it also serves as a multiplexor example. This VHDL construct is a selective

signal assignment, similar to the sequential CASE statement. It is a concurrent process

Listing 4.2. Excerpt from SEQUENCER source code (Appendix A).
-- mux structure that uses state flip-flops to select bits of "mod2_sums" for output

WITH state SELECT
serial<= mod2_sums(l) WHEN statej,

mod2_sums(2) WHEN state_2,
mod2_sums(3) WHEN statej,
mod2_sums(4) WHEN state_4,
mod2_sums(5) WHEN state_5,
mod2_sums(6) WHEN state_6,
'0' WHEN stateO;

executing in the same simulation time as all other concurrent statements and concurrent

PROCESS statements. The hardware representation is a multiplexor with the signal "state"

determining which input signal is assigned to the signal "serial". Thus, "state" is the

selection input, "mod2_sums(6:l)" are the inputs, and "serial" is the output.

c Implicit Storage Elements

Listing 4.3 shows a portion of the DATAREG source code describing an

implicit storage register with a load enable and an asynchronous reset. Earlier in the code

Listing 4.3. Excerpt from DATAREG showing implicit storage register (Appendix A).
PROCESS (elk, reset)
BEGIN

IF (reset = '0') THEN - asynchronous clear
q <= "00000000";

ELSIF (clkEVENT AND elk = '0') THEN -- clock on falling edge.
. IF (load ='0') THEN - Q outputs get D inputs

q <= d; - only if "load" input is low.
END IF;'

ELSE
END IF;

END PROCESS; .

25

(see Appendix A), BITJVECTORs "dO" and "qO" were declared. The value of "dO" is

assigned to "qO" only when the load enable signal is low and the clock is on a falling edge.

If "reset" goes low then "qO" is assigned zeros regardless of the clock, "dO" or "load". The

code describes an implicit storage register because if the conditional statements do not

evaluate to true, "qO" is not assigned the value of "dO". Thus, it is implied that "qO" retains

its old value and therefore is "stored". No component with specific ports is explicitly

instantiated, yet the behavior is that of a register. Storage is implied any time an assignment

statement is used inside a synchronization construct, which uses the 'EVENT attribute in the

conditional part of an IF...THEN...ELSIF statement. Storage is also implied for assignment

statements inside an incompletely specified conditional assignment statement (that is, an

IF...THEN with no ELSE). Looking back at Listing 4.1, implied storage is an inherent part

of state machines. (Harr, 1991, p. 149).

B. SIMULATION

The simulation procedure was quite simple. All the polynomials representing the k and g

vectors were multiplied together as described above to obtain the rows of Table 1. Then

simulations were run in the Quicksimll environment using all appropriate combinations of A:

and n (n > k) in the STIMULUS block. The resulting "serial_out" waveforms in the Trace

window were checked against the code sequences derived from Table 1. Figures 1 through

4 depict the output from the simulator for rates 2/3, 1/6, 1/2, and 3/5, respectively. The

"serial_out" waveforms were used as the standard against which the FPGA implementation

was checked.

- Table 1 shows the code bits used to verify the simulation outputs. It contains the code

bits for any code working on the test message pattern "1001110101" with connection

vectors g, = 2158, & = 2518, gj = 2428, g4 = 2368, gs = 2238 and & = 2758 and an 8-bit

DATAREG. Each row comes from the product of the polynomial representations of k and

26

one of the connection vectors, g. Note that polynomials representing bit vectors are found

by associating a power of X, starting with X°, with each bit position. With the bit positions

numbered 0 through 7 from left to right, the bit position becomes the exponent in the

corresponding polynomial term if the bit is a T. If the bit is a '0', no term appears in the

polynomial. To arrive at row kg!, the polynomial (1+X3+X4+X5+X7+X9), representing the

test message pattern, is multiplied by (l+X^X'+X7), representing the connection vector gi.

Remembering that the partial products are modulo-2 added, the product is

(1+X3+X7+X9+X13+X16), which is the polynomial representing row kg».

TABLE A .1. CODE BIT PATTERNS FOR TEST MESSAGE PATTERN "1001110101"
'—'—"—■- k MULTIPLES

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

kg, 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1

kg2 1 0 1 1 0 0 1 0 1 1 1 1 1 1 0 1

kg3 1 0 1 1 1 0 0 0 0 1 0 0 1 0 1 0

kg4 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0

kg5 1 0 0 0 1 1 0 1 1 0 0 0 1 1 1 1

kg6 1 0 1 0 0 1 0 1 1 0 1 1 1 1 0 0 1

The output code bit sequence of any code rate kin is found by entering the table at

column number k, reading down the column n rows, then repeating this procedure in

columns 2k, 3k, and so on. Thus, for a rate 3/5 code, the first five code bits, "01100", are

found in column 3, the second five, "00001", are found in column 6, and so on. The 3/5

code generates the pattern "01100 00001 01011 01000 01011". The 2/3 code generates

"000 111 000 100 111 010 111 001".

C. STIMULUS

The STIMULUS block provides a serial test message pattern to the encoder. During

development the test pattern was "1001110101 0000000" with the leftmost bit transmitted

first. The trailing zeros are necessary to flush DATAREG. Since all of the bits in

27

DATAREG affect the output code bits, the coded stream is not complete until the last '1'

has transited completely through the register. STIMULUS is written to repeatedly transmit

the test message forever.

One of the great advantages of VHDL is that both the design and the test code is

written in the same language. Therefore, the test block is thought of as just another

hardware model with inputs and outputs. Thus, the design under test can provide inputs to

the test block and the test block can respond with different test outputs as appropriate. In

this case, STIMULUS takes as an input the signal "en" from the "IN_ENBLE" block.

Recall that "en" allows k message bits into the encoder. STIMULUS provides input only as

long as "en" is high, just as an actual system would behave if the encoder design was a

component of the system. This block could have been written to have more of the behavior

of the parent system, such as the ability to load REGFILE with code parameters, but the

simulation emphasis was on checking that the convolutional encoding was correct. The

VHDL code for STIMULUS was purposely kept quite simple to minimize debugging. A

STIMULUS block with bugs obviously would cause incorrect results from the circuit under

test.

Most of the STIMULUS code simply makes sure that the first bit of the test message is

not sent in the same high "en" pulse as the final bit. When the final bit of the test pattern is

sent, a flag is set. As long as the "en" pulse is active, the flag prevents STIMULUS from

starting over at the beginning of the test pattern until a new "en" pulse has arrived. This

guarantees that the first bit of the test message pattern is always the first bit sent within an

active "en" pulse. For simulation purposes, this scheme synchronizes the test pattern to the

encoder operation so that the beginnings of the repeated test patterns could be easily

located in the QuickSimll output waveforms.

28

This chapter concludes the discussions on the high level behavioral design and

simulation of the programmable convolution^ encoder. The next chapter is the first of

several that deal with specific hardware details associated with Field Programmable Gate

Arrays (FPGAs) and how to translate the behavior covered above into hardware.

29

V. FIELD-PROGRAMMABLE GATE ARRAYS

This chapter describes FPGAs and the types that are available. Because it is important

to have a detailed knowledge of the target FPGA architecture to get best performance, this

chapter also provides a very detailed description of the line of FPGA made by Xilinx, Inc.,

called the Logic Cell Array (LCA). The Xilinx XC3064 LCA was used to implement the

programmable convolutional encoder design.

A. INTRODUCTION

Field Programmable Gate arrays are standard, off-the-shelf VLSI devices whose

functionality the user defines. They consist of a pattern of logic blocks surrounded by

interconnection paths. There are four types available, shown in Figure 5.1.

Symmetrical An»y

D
W

Legte Block —J-» I

D

D
D
D

D
Row-based

D
D

I I I l l I I p

i i iti i i i n
topic Block

J noroonnoot

b

H*Korn*a i '
Ovwtaytdon
Logic Block»

Legte Block

PID ,
Block

■Trtofconnocl

Htowchlcal PID

Sea-ol-Oatas

Figure 5.1. The four types of FPGA (Brown, 1992, p. 14)

Each logic block contains combinational circuitry such as multiplexors, look-up tables, or a

PLD that the user programs to implement Boolean functions. The blocks also have flip-

flops which can store either the output of the Boolean function or other signals routed into

30

the block but bypassing the logic structures. The interconnection resources consist of metal

segments and programmable switches which route signals between the logic blocks. Each

block implements a small piece of the overall design, and the interconnection resources

connect all the pieces together into a complete digital design. The designer uses CAD

software to generate a binary file from a schematic diagram or from a hardware description

language and then downloads the file to the FPGA to configure the logic blocks and

interconnection resources.

Because FPGAs can implement large digital circuits on a single chip, they offer huge

advantages in system size, power consumption, and speed over systems built with SSI and

MSI technology. They are commonplace in today's new electronic systems implementing

random logic and application-specific functions. Most types are reprogrammable. This

feature makes FPGAs ideal for prototyping new systems and for changing the structure of

an existing system in the field.

The two most important benefits to using these devices are, first, convenience, and

second, low cost. FPGAs provide inexpensive, instantly verifiable prototypes of complex

digital circuits. As a system develops, the user can repeatedly change the design by

downloading a new configuration program into the device. Not all FPGAs are

reprogrammable, however. Some types, referred to as "one time programmable", are

permanent once programmed and must be discarded if changes become necessary. The

Xilinx device used in this thesis uses static RAM technology to set up the logic blocks and

switching resources, and the user can reprogram it an unlimited number of times.

- The second major benefit is low cost. Other avenues to custom or semi-custom VLSI

devices involve high non-recurring engineering (NRE) costs that are associated with tooling

a commercial foundry to produce a device with the desired functionality. One such device is

the Mask-Programmable Gate Array (MPGA). This device consists of rows and columns of

31

transistors that are connected according to the user's specifications. However, the foundry

must produce the metal mask layers and deposit the metal interconnect onto the die. This is

costly. These costs are usually in the tens of thousands of dollars and occur only once

during production of the design. This cost translates to a per unit cost much higher than that

of an FPGA for volumes less than about 1000 units (Brown, p. 4). Consequently, for low

volume systems, FPGAs are used in the final systems as well as in the prototypes.

Despite the low cost and convenience offered by FPGAs, they have some limitations.

The programmable switches in the routing paths introduce extra resistance and capacitance

which would not be present in a custom chip. The additional RC time constants slow the

signals traveling between the logic blocks causing FPGA designs to be significantly slower

(up to several times slower (Brown, p. 6)) than other VLSI implementations. Another

limitation is lower logic density. The programming circuitry and switches that give FPGAs

their programmable nature occupy space on the die which otherwise would be dedicated to

the design itself. FPGAs can be 8 to 12 times less dense than MPGAs manufactured in the

same fabrication process (Brown, p. 6).

A consequence, but not necessarily a limitation, of the FPGA architecture is that special

design techniques must be used to squeeze all of the available performance out of these

devices. The typical academic procedure for designing state machines with states encoded

as a binary sequence, for example, often is not the best approach. FPGA architectures tend

to have a high proportion of flip-flops compared to the combinational circuitry that feeds

the flip-flop inputs. Consequently, highly encoded state machines such as binary counters

can require several logic blocks worth of next state decoding logic. Effectively, these types

of state machines require logic blocks in series, and their performance suffers from the

added propagation delay introduced by the extra interconnect. The problem can be avoided

by using a different state encoding technique that uses more flip-flops. Using more flip-flops

32

tends to decrease the complexity of the next state decoding circuitry, reducing the number

of logic blocks and the combinational delays. Design techniques which take advantage of

one-hot state encoding and shift register structures like Linear Feedback Shift Registers

(LFSRs), Johnson counters, and ring counters are well suited to FPGA architectures

because they require relatively little combinational circuitry. (Knapp, Klein)

B. XILINX XC3064 ARCHITECTURE

The FPGA used for the convolutional encoder design is the XC3064 from Xilinx, Inc.

Figure 5.2 shows the general structure of all Xilinx FPGAs, which Xilinx calls Logic Cell

Arrays (LCA). The XC3064 consists of an 16 x 14 matrix' of 224 Configurable Logic

Blocks (CLBs) surrounded by 120 Input/Output Blocks (IOBs). The CLBs implement the

logic design, and the IOBs provide an interface between the design and the package pins.

Programmable interconnection channels run horizontally and vertically between the CLBs

and around the CLB matrix. Static RAM cells control the programmable functions of the

LCA.

DD DD DD
rt^

^ Configurable
Logic

tfc Block
I/O Block—>□

D D D D ft
D
D

D
D D D D D D

D

D
D D D D D D

D

D
D

Vertical
D D D D

|—| Routing
bj Channel

Routing
^DD DD DD DD

Figure 5.2. Xilinx LCA structure (Brown, 1992, p.22)

33

1. Configurable Logic Block

Figure 5.3 shows a CLB. Each CLB contains a 5-input look-up table (LUT), two

flip-flops, and multiplexors to route signals between the flip-flops, the LUT, and the CLB

inputs and outputs.

a. Multiplexors

The CLB contains two types of multiplexors. The first type is denoted by the

traditional rectangular multiplexor symbol with the control line entering the bottom. It can

either route the Q flip-flop output back to the D input, disabling the flip-flop, or it can route

the F, G, or DATA IN (IN) signals to the D input. Its control line is either of the inputs

ENABLE CLOCK (EC) or (ENABLE). Each flip-flop D input is fed by one of these

multiplexors.

The second type of multiplexor is denoted by the trapezoidal symbol without a

control line. This type controls the configuration of the CLB. The selection signals for these

multiplexors come from static RAM cells that hold bits of the configuration program

downloaded by the user. Since these bits do not change after the configuration program has

been downloaded, the control lines are not shown. Two multiplexors select which signal

feeds the D input of the flip-flops (F, G, DIN), and two more configure the X and Y CLB

outputs as registered or combinational. The remaining three select the clock line (inverted

or noninverted), the clock enable line (ENABLE CLOCK or (ENABLE)), and the effect of

the reset line entering the CLB from the routing channels (DIRECT RESET or (INHIBIT)).

b. Look-up Table

The LUT has five inputs and two outputs. It is a 32x1 table which can

implement one function of five variables or two functions of four variables. There are seven

physical inputs to the LUT: CLB inputs A, B, C, D, E, and feedback signals QX and QY.

However, a maximum of five of these seven are used to implement Boolean functions. For a

34

5-variable function, three are A, D, and E. The fourth is any one of B, QX, or QY, while

the fifth variable is any one of C, QX, or QY. In this case, the LUT outputs, F and G, are

identical. See Figure 5.4b.

DATA IN

ENABU CLOCK

CLOCK

n

LOGIC C_
VARIABLES n

OX

COMBINATORIAL
FUNCTION

QY

J3L

1 (ENABLE)

DIRECT BB_
RESET

0 (INHIBIT)

(GLOBAL RESET)

F

DIN

G

0

MUX

1

F

DIN

G 0
MUX

1

£

r>

D Q

RD

<->

D O

RD

3>

CLB OUTPUTS

Figure 5.3. Configurable Logic Block (Xilinx, 1994, p.2-109)

Similarly, the inputs to the two 4-variable functions are groupings of the seven

physical inputs. One variable is A which must be common to both functions. For both

functions one input is either B, QX, or QY, and another input is either C, QX, or QY. The

fourth is either D or E. The outputs F and G are independent. See Figure 5.4a.

35

Some 6- and 7-variable functions can be implemented, but because of the

physical structure of the LCA, these functions must be in the form:

F = f,(A,L,M,D)-!E + f2(A,L,M,D)'E

where E is the select input of a 2-to-l multiplexor (the exclamation point implies Boolean

negation), fi and f2 are two 4-variable functions feeding the data inputs of the multiplexor,

and L and M can each be B, C, QX, or QY. A further constraint is that at least two of the

inputs to fi and f2 (inputs A and D) must be common to both functions. As with the five-

variable case, LUT outputs F and G are identical. See Figure 5.4c.

c. Storage Elements

Each CLB contains two D-type flip-flops. User-programmed multiplexors,

mentioned above, select the source of each D-input from either the flip-flop's own Q output,

the F or G LUT outputs, or the DATA IN (DI) input which bypasses the LUT. If the CLB

is configured for registered outputs, one Q-output becomes the X CLB output, and the

other becomes the Y CLB output. The Q-outputs also go to the QX and QY inputs of the

LUT. The flip-flops are clocked by the invertible CLOCK (K) input, and they are

asynchronously reset by either DIRECT RESET (RD) or GLOBAL RESET.

2. Input/Output Block

The IOBs surround the 8-by-8 array of CLBs and provide an interface to the

package pins. Each pin can be used as an input to the device or as an output. Figure 5.5

shows an IOB. Each block contains an output D-type flip-flop that can provide a registered

signal to a pin configured as an output pin. In addition, the IOBs have an input storage

element which can be set up as either a D-type flip-flop or as a D-type latch to store signals

from pins configured as inputs. The asynchronous resets of both storage elements connect

to the LCA's global reset line, GLOBAL RESET. Their clock inputs connect to either of

36

£9X<WAVXf***'-XJ>W*#X#*v* :^*»/'^<«*tt*»»:-:-:*»»>w««^

A'
B

I QX

QY 0
&-

[H

ANY FUNCTION
OF UP TO 4
VARIABLES

A-f
B

QX

QY

C
D

5 D-

tH

ANY FUNCTION
OF UP TO 4
VARIABLES

a
:^<.;.^v.:.sss^:*w*I'r->>>''AW*:-s^

^w^«^>v/,j^:.vv^.%---:v/^-tw*'<^''-*y.^:.:./'.:.* «#>MW^vJ««■:■^x«■x«<^»*w«•Ä<■>>x«r<ov*c■wowAw■i^v*^v

A-
B

QX

QY

13
L>

D- ANY FUNCTION
OF 5 VARIABLES

I—F

jsC-v-v. •-'-* S".->:**K-**W*/»W:-X«*.\WA-. •*. v«v>»

A-t"
B-*-

fQX

QY-

CH- a D- ANY FUNCTION
OF UP TO 4
VARIABLES

£

ANY FUNCTION
OF UP TO 4
VARIABLES

M f

D- B ä

<
QY-CF,

II
C"§

U*
0 j!

rX

♦*/.■■ *w. ■-'■'' «W.'W»V/*»\

l-F
M

L-Q

Figure 5.4. Look-up Table Usage (Xilinx, 1994, p. 2-110)

37

two clock lines, CK1 and CK2, which lie on the edges of the LCA die. Each clock is

invertible for the die as a whole, but not for any individual storage element.

 »-STATE
(OUTPUT ENABLE)

OUT —

DIRECT« —

REGISTERED* —

ID-

PROGRAM-CONTROLLED MEMORY CELLS

OUT
MVERT

3-STATE
INVERT

5>
OUTPUT
SELECT

3E>

OK

0 Q

FUP
FLOP

Q D
FLIP
FLOP

or
LATCH

CK>

PROGRAM
CONTROLLED
MULTIPLEXER

—Cr>"S>

SLEW
RATE

y—' D Q U" OUTPUT
BUFFER

PASSIVE
PULL UP

< TTLor
CMOS
INPUT

THRESHOLD

Vco

it

VO PAD

f
(GLOBAL RESET)

CK1

CK2

O » PROGRAMMABLE INTERCONNECTION POINT Of PIP

'igure 5.5. Input/Output Block (Xilinx, 1994, p.2-107)

If a particular I/O pin functions as an output, its signal, OUT (O), comes through a

programmable 3-state output buffer from a 2-to-l multiplexor which selects the registered

or combinational version of the signal. An XOR gate, one of whose inputs connects to a

program-controlled memory cell, can invert the signal before it arrives at the flip-flop. The

active logic level of the buffer control, 3-STATE (T), is invertible in a similar manner.

38

When an I/O pin is an input, the signal passes through an input buffer whose input

thresholds are programmed for TTL or CMOS levels. This is a global feature of the die, not

a block-by-block programmable feature. The signal then feeds the input storage element for

latched inputs, REGISTERED IN (Q), and for combinational inputs, DIRECT IN (I),

bypasses the element for direct input to the interconnection resources.

3. Configuration Memory

The control of the multiplexors, XOR gates, 3-state output buffer, and pull-ups, and

switching resources comes from a configuration program which loads from external

memory into the LCA on power-up or on the user's command. The program loads an array

of static memory cells that are distributed throughout the LCA. The outputs of these cells

configure all of the programmable features.

4. Programmable Interconnect

The programmable interconnect resources consist of three types of interconnection

between CLBs and IOBs: (1) General Purpose, (2) Direct, and (3) Longlines. These

structures connect the blocks on the LCA to implement the user's digital design.

a. General Purpose Interconnect

Five general purpose interconnect metal lines run the length and width of each

CLB or IOB. At each corner, a switching matrix provides the interConnectivity between the

four sets of five lines meeting at that particular junction. Each line can connect to between

four and six other lines, depending on which line carries the input signal. Figure 5.6 shows

the various configurations of a switching matrix.

b. Direct Interconnect

Direct interconnection allows CLBs to connect their outputs directly to

neighboring CLBs or IOBs, bypassing the general interconnect switching matrices and lines.

This method presents the least delay to signals traveling between adjacent blocks. The X

39

CLB output can connect to the B input of the CLB to its right and to the C input of the one

to its left. The Y CLB output can connect to the D input of the CLB above and to the A

input of the CLB below. The CLBs neighboring IOBs connect to the two closest IOBs. One

CLB output goes to one IOB, and one input comes from the other IOB.

Figure 5.6. Switching Matrix Configurations
(Xilinx, 1994, p. 2-113)

c Longlines

Longlines run the width and height of the interconnect area, bypassing the

general interconnect switching matrices. Every column of the interconnect area has three

longlines and every row has two. Two more run along the outer sets of switching matrices.

Longlines carry signals which must travel a long distance or which require minimal skew.

The next chapter covers design methods that optimizes hardware performance by taking

advantage of some of the characteristics of the FPGA architecture.

40

VL STATE ASSIGNMENT

Using the SEQUENCER block as an example, this chapter compares the one-hot state

assignment technique to the standard binary state assignment technique. It also describes

how to use redundant states to help take advantage of the LUT based architecture of the

Xilinx LC A.

A. ONE-HOT vs. BINARY

One-hot state assignment is a scheme whereby each state in a state machine is

represented by one and only one active flip-flop. There are at least as many flip-flops in the

state machine as there are states. Because each state is represented by only one flip-flop, no

state decoding logic is necessary. Consequently, the one-hot state assignment reduces the

next-state decoding logic because the next state of the machine is determined by the input

and one active flip-flop. Overall, the complete circuit may have more logic than a binary

encoded machine, but, on a per flip-flop basis, the simplified next-state logic replaces the

deeper, slower, high fan-in logic of a binary encoded machine, thus decreasing logic delay

between state transitions and enhancing speed.

Another benefit from the one-hot assignment is the ability to break a state with deep

input logic into redundant states with simplified input logic. The transition equation for each

redundant state is composed of small groups of product terms which were in the equation

for the original state. This will be demonstrated later in this chapter.

The one-hot assignment is not always the best choice, however. As the number of states

increases, the number of flip-flops increases one for one, whereas the number of flip-flops

increases with log2(S) (where S is the number of states) for binary assignment. For small

state machines with few inputs and simple next-state logic, binary encoding might be the

best choice because the number of flip-flops can be conserved.

41

For example, the Xilinx XC3000 family of devices uses a 5-input look-up table (LUT)

to implement combinational logic. If a modulo-32 counter is needed in a design, and it

requires no control lines besides an asynchronous reset, which is handled outside the LUT,

then a binary state assignment would be satisfactory because the only inputs to the LUTs

would be the five present state outputs of the flip-flops. This approach would also conserve

flip-flops.

On the other hand, if only one control line is needed, perhaps an "enable", then one input

of each LUT would be consumed for the control line, leaving only four for present state

inputs. In this case, assuming the binary state assignment, a modulo-16 counter would be

the largest counter possible without introducing an extra LUT (in another CLB) for each

flip-flop. Therefore, every flip-flop would require two levels of CLBs to implement the

modulo-32 counter. The additional delay between the CLBs would cut the counter's speed

significantly. Under this condition, the binary state assignment would not be appropriate.

Another potential pitfall is that the number of invalid states in a one-hot assignment far

outweighs the number of valid ones. A 5-state state machine requires five flip-flops if a one-

hot state assignment is used, but there are 32 possible states associated with five flip-flops.

Therefore, this relatively simple state machine would have 27 invalid states! The extra logic

required to account for all or most of the illegal states could create longer signal paths and

significantly slow down the state machine erasing the benefits of the one-hot state

assignment. Thus, the one-hot assignment delivers simplicity and speed for the cost of lower

reliability and inefficient usage of flip-flops.

- The designer must be intimately familiar not only with the details of the design itself, but

also with the target technology, which dictates the appropriate logic structures that give the

best performance. Thus, the choice of state assignments is dependent upon the state

machine itself and the technology implementing it. In the above example, a counter based on

42

a Linear Feedback Shift Register (LFSR) is the best solution because it requires only five

flip-flops and little combinational circuitry to implement, making it appropriate for

LUT-based FPGA technology.

B. LUT IMPLEMENTATION

The 5-input LUT implements the logic to the D-input of each flip-flop in the CLBs of

the Xilinx 3064 LCA that was used to implement the encoder design. The actual structure

of the combinational circuit is not a concern because the LUT has a constant delay across it

regardless of the logic function it realizes (Xilinx, 1994, p. 2-111). The main concern is

whether the LUT has enough inputs to accommodate the number of variables in the logic

function. For a 5-variable function, the LUT must have five available inputs. The LUT acts

as a 32 X 1 RAM whose 5 address lines are the five inputs of the logic function, and whose

1-bit outputs are the active or inactive result of each of the 32 possible product terms. To

select state assignments for the state machines in the encoder design, each state machine

was studied to determine the number of inputs necessary for the next state decoding logic

for each flip-flop. The goal is to keep the number of inputs below five so that the complete

decoding function for each state flip-flop is contained in the flip-flop's companion LUT. The

SEQUENCER block is used here to illustrate the method and to compare to a binary

assignment.

Table 6.1 shows the state table for the SEQUENCER block. The state diagram is shown

in Figure 6.1. Table 6.2 lists the state transition equations and the required number of inputs

to the LUT for each flip-flop. For example, s3 is the next one-hot state if SEQUENCER is

in state 2 and the "n(2:0)H input is a binary pattern other than "010". As Table 6.2 shows,

the fan-in to each one-hot state flip-flop except for si is less than five inputs, suggesting that

the next state logic for those flip-flops can be completely contained in their respective

43

LUTs. State si must be split into several redundant states to simplify fan-in logic. This

matter is dealt with in Section C.

Table 6.3 shows the state transition equations for a state machine with a binary state

TABLE 6.1: STATE TABLE FOR SEQUENCER BLOCK

STATE
INPUT n(2:0)

OUTPUT 000 001 010 011 100 101 110 111

sO si si si si si si si si 0

si s2 s2 s2 s2 s2 s2 s2 s2 m(l)

s2 s3 s3 si s3 s3 s3 s3 s3 m(2)

s3 s4 s4 s4 si s4 s4 s4 s4 m(3)

s4 s5 s5 s5 s5 si s5 s5 s5 m(4)

s5 s6 s6 s6 s6 s6 si s6 s6 m(5)

s6 si si si si si si si si m(6)

assignment. The state assignment is: sO = "000", si = "001", s2 = "010", s3 = "011",

s4 = "100", s5 = "101", and s6 = "110". D2, Dl, and DO are the inputs to the state flip-

flops, and they represent the next state of the machine. Note that in this table, sO through s6

represent the 3-bit present state, whereas they represent a 1-bit present state in the one-hot

TABLE 6.2: STATE TRANSITION EQUATIONS (ONE-HOT)

STATE TRANSITION EQUATIONS
DO = reset
Dl = sO + s2-(010) + s3-(011) + s4-(100) + s5-(101) + s6
D2 = sl
D3 = s2-(!010)
D4 = s3-(!011)
D5 = s4-(!100)
D6 = s5-(!101)

#LUT
INPUTS

0

4
4

44

assignment (Table 6.2). For example, flip-flop input D2 would be asserted high if the

present state is s3 with "n(2:0)" = !("011"), if the present state is s4 with

"n(2:0)H = !("100"), or if the present state is s5 with "n(2:0)n = !("101"). The exclamation

/ ~\ n(2:0ym()

(000+O0l-KII0ym(2)

!100/m(4)
l011'm(3)

Figure 6.1. State diagram for SEQUENCER block.

point represents Boolean negation. Thus, the next state logic input for D2 consists of the

3-bit encoded state and the 3-bit input, n(2..0), for a total of six inputs to the LUT. Indeed,

all three flip-flops for the binary state assignment require six or seven inputs. Since

theBoolean equations for the D inputs cannot be placed in the proper form for a single LUT

to implement as a 6- or 7-variable function (see Chapter V), more than one LUT is needed

for every flip-flop D-input.

45

TABLE 6.3: STATE TRANSITION EQUATIONS (BINARY)

STATE TRANSITION EQUATIONS
D2 = s3-(!011) + s4-(!100) + s5-(!101)

1 Dl = si + s2-(!010) + s5-(!lÖT)
DO = reset + si +s3-(!011) + s5-(!101)

#LUT
INPUTS

C. EXPLOTITNG REDUNDANT STATES

The one-hot technique is attractive for the SEQUENCER state machine because, as

Table 6.2 shows, all states except si require fewer than five inputs and therefore only one

LUT. State si, as mentioned earlier, can be broken up into several redundant states: si1, si",

and si'". All three states yield the same output and proceed to the same next state as the

original si under the same conditions that allowed the original transition. In this machine, si

proceeds to only one state, s2, regardless of the input values. Therefore, s2 is the next state

for all of the primed si's. Table 6.4 shows the new state table and Figure 6.2

TABLE 6.4: STATE TABLE WITH REDUNDANT STATES (ONE-HOT)

STATE
INPUT n(2:fl)

OUTPUT 000 001 010 011 100 101 110 111

sO si' si' si' si' si' si' si' si' 0

sr s2 s2 s2 s2 s2 s2 s2 s2 m(l)
si" s2 s2 s2 s2 s2 s2 s2 s2 m(l)

si'" s2 s2 s2 s2 s2 s2 s2 s2 m(l)
s2 s3 s3 si" s3 s3 s3 s3 s3 m(2)
s3 s4 s4 s4 si" s4 s4 s4 s4 m(3)
s4 s5 s5 s5 s5 si'" s5 s5 s5 m(4) |
s5 s6 s6 s6 s6 s6 si'" s6 s6 m(5) |
s6 si' si' si' si' si' si' si' si' m(6) |

shows the new state diagram. Table 6.5 shows the new transition equations. The equations

for si', si", and si"' were previously part of the transition equation for si. Groups of

46

product terms have been broken out and assigned to the new states of si', si", and si"'.

Now the next state decoding logic for each flip-flop (and each state) is simple enough to

reside in a single LUT. Speed can be maximized.

Note that splitting a state in the binary state assignment would accomplish nothing

because the states are encoded. Six LUT inputs would still be required to distinguish all of

the states: three for the state machine inputs and three for the encoded states. In general,

!10l/m(5)

Q^-^OIO/m(2) /!OIO/m(2)

*0U'm<3) /

!011/m(3)

Figure 6.2. State diagram for one-hot assignment and redundant states.

with the one-hot state assignment, any complicated next-state logic can be broken down

into a set of less complex circuits whose outputs are assigned to redundant states. There are

fewer inputs required to activate these redundant states than for the original state so that all

the combinational logic for each flip-flop may reside in the companion LUT.

47

All state machines in the encoder were synthesized with a one-hot state assignment after

using this analysis on each machine. The handshaking state machine, HANDSHAK, is the

TABLE 6.5: STATE TRANSITION EQUATIONS WITH
REDUNDANT STATES (ONE-HOT)

TRANSITION EQUATIONS #LUT
INPUTS

DO = reset 0

Dl'= s6 1
Dl" = s2-(010) + s3-(011) 5
Dlm = s4-(100) + s5-(101) 5
D2 = sl' + sl" + slH' 3

D3 = s2-(!010) 4

D4 = s3-(!0in 4
D5 = s4-(!100) 4

D6 = s5-(!10n 4

only one appropriate for binary encoding because it has only three states. In fact, it fits into

a single CLB.

The next chapter explains the process of adding pipeline registers to the encoder design

and implementing it in the Xilinx XC3064PG138-100 LCA

48

VIL FPGA IMPLEMENTATION

This chapter describes the sequence of events leading to an LCA implementation of the

programmable convolutional encoder. It discusses the Xilinx CAD programs, and some

minor differences between the hardware and the VHDL model. The chapter also covers the

addition of pipelining registers, and offers comments on the use of the Mentor Graphics

Autologic tool and back annotation into VHDL.

A. OVERVIEW

All state machine circuitry was derived from the state diagrams in Appendix C. These

diagrams are the result of the same analysis procedure described for the SEQUENCER

block in the last chapter. The circuitry for the remaining blocks of the design were produced

directly from the VHDL source code by hand. Originally, this phase was to be done by the

Autologic tool, but that tool was not useful for reasons outlined later in the chapter.

The design was implemented as closely as possible according to what is dictated by the

VHDL source code. The only difference between the LCA and VHDL versions of the

design is the behavior of the global reset line, "reset", and the latency that occurs as a

consequence of pipelining. In the LCA version, "reset" is active high because the

asynchronous reset of the individual flip-flops in the CLBs (input RD) are active high. Refer

to Figure 5.3. Because all of the state machines have a reset state with one state flip-flop

high, and because none of the flip-flops have a preset input, one input of the LUT feeding

the high flip-flop must be used as an OR gate to force the flip-flop high on the clock edge

following the activation of "reset". Therefore, "reset" is synchronous. Despite the fact that

"reset" must be synchronous because of one preset flip-flop in the reset state of each state

machine, the other state flip-flops are reset using the asynchronous RD inputs to avoid

49

wasting an LUT input for resetting. Table 7.1 lists the convolutional codes possible with

this design.

B. IMPLEMENTATION FLOW

1. Schematic Capture

All schematic capture and Xilinx related development of the encoder design was

done in the Mentor Graphics version 7.0 environment because this version is the only one

for which the Xilinx macro libraries are installed. Despite the fact that all high level

modeling was done in Mentor Graphics version 8.2, inputting schematics in the older

version was not a problem as one might think. There were no gate level schematics done in

the newer version, so there was no incompatibility problem with schematics being translated

to the older version. Shifting to the older CAD system came at a convenient break in the

implementation flow where schematics were manually derived from the VHDL code. After

schematics were translated from VHDL, they were entered with LCA_NETED, the

schematic capture program in Mentor Graphics, version 7.0.

2. Functional Verification

To verify functional operation, a TESTBENCH schematic was generated which

incorporated the encoder block and a test circuit. This TESTBENCH is similar to the

TESTBENCH concept used in VHDL modeling where a stimulus file interacts with the

circuit under test while outputs and test points are monitored. The test circuit in this

graphical TESTBENCH provides the same test message to the encoder as the VHDL

STIMULUS file used in the high level model. By using the same test pattern, the output of

the LC A implementation was easily compared to a known correct output produced from the

VHDL model.

The test circuit only provided the test pattern, however, because it needs to take

"en" from the INJENBLE block as an input, just as the STIMULUS block did in the high

50

TABLE 7.1. CONVOLUnONAL CODES.
(Proakis, 1989, pp. 466 - 471)

Rate L Connection Vectors (octal)
1/2 3 5,7

4 15,17
5 23,35
6 53,75
7 133, 171
8 247, 371

1/3 3 5,7,7
4 13, 15,17
5 25, 33, 37
6 47, 53, 75
7 133, 145, 175
8 225,331,367

1/4 3 5, 7, 7, 7
4 13, 15, 15, 17
5 25, 27, 33, 37
6 53, 67, 71, 75
7 135, 135, 147, 163
8 235,275,313,357

1/5 3 7, 7, 7, 5, 5
4 17, 17, 13, 15, 15
5 37, 27, 33, 25, 35
6 75, 71, 73, 65, 57
7 175, 131, 135, 135, 147
8 257, 233, 323, 271, 357

1/6 3 7, 7, 7, 7, 5, 5
4 17, 17, 13, 13, 15, 15
5 37, 35, 27, 33, 25, 35
6 73, 75, 55, 65, 47, 57
7 173, 151, 135, 135, 163, 137
8 253,375,331,235,313,357

2/3 2 17,06,15
3 27, 75, 72
4 236, 155, 337

2/5 2 17,07, 11, 12,04
3 27, 71, 52, 65, 57
4 247, 366, 171, 266, 373

3/4 2 13, 25, 61, 47
3/5 2 35, 23, 75, 61, 47
4/5 2 237, 274, 156, 255, 337

51

level model. The version 7.0 environment does not have a VHDL compiler, so the test

circuit and a MISL file were used instead. MISL files cannot take inputs, so the test circuit

provides the test pattern because it must react to the response of the encoder. The MISL

file provides connection vectors. The clock period, k(2:0), n(2:0), and reset were controlled

from the command line during each simulation run. Outputs were checked against the same

four code rates used in the high level model: 1/2, 2/3, 3/5, and 1/6. The program

LCA_EXPAND_SIM was run on the schematic to convert it to a format compatible with

the Mentor Graphics QuickSim simulator.

3. LCA Implementation

To progress from a schematic of the design in the Mentor Graphics environment to

an LCA implementation, the following CAD programs were run in the order given.

a. LCAJEXPAND and EREL2XNF

LCA_EXPAND reformats the schematic into a format appropriate for input to

EREL2XNF which outputs a Xilinx Netlist Format (XNF). (Messa, 1991, p. 67) The XNF

file is a standard format used by the Xilinx Development System. Designs described with

Boolean equations, schematics, or hardware description languages are converted to XNF

files before further processing. (Lautzenheiser, 1989, p. 2)

b. XNFMAP

XNFMAP maps the logic defined by the XNF file to CLBs and IOBs and

removes unnecessary logic. It places the resulting logic partitioning into a MAP file, which

is the input to MAP2LCA and creates a cross-reference report file (CRF) which contains a

summary of LCA resource usage and cross-references between original logic elements and

LCA design elements. (Xilinx, 1991, p. 13-1)

52

c. MAP2LCA

The MAP2LCA program uses the data in the MAP file to partition the design

into a particular Xilinx LCA, in this case an XC3064PG132-100, and places the results into

a Logic Cell Array (LCA) file. It also creates a constraints file (SCP) that contains the initial

placement of the design and lists placement and routing constraints specified in the

schematic. Lastly, it abbreviates full hierarchical path names of signal and symbols and lists

them in an AKA file. (Xilinx, 1991, pp. 7-1 - 7-3)

4. CLB Placement and Routing

a. Automatic Place and Route

The Automatic Place and Route (APR) program takes an LCA file as input and

uses the popular optimization algorithm called Simulated Annealing to generate an optimal

placement of CLBs in the LCA architecture to minimize delays. Documentation is written to

a report file (.rpt) and the routed design is written to another LCA file. The input LCA file

may already have placement and routing information from a previous APR run. Using the

correct command line option with APR allows the user to add more features to an already

routed design. This practice Xilinx calls "incremental design". The APR program has many

options that provide the user with varying degrees of control over the APR process. The

user can even tell APR exactly where to place CLBs that contain particular parts of the

design. The user exercises control over APR with Constraint Files. (Xilinx, 1991, pp. 2-1

-2-11)

b. Constraint Files

It is impossible for the APR program to know which signals of the design are the

most critical simply by looking at the input LCA file. If it gets no outside advice from the

designer, it randomly decides where to place CLBs and which signals to route in the faster

routing resources on the LCA. If the critical path ends up smaller than the clock period, this

53

is satisfactory. Otherwise, the design will be too slow. The higher the performance needed

from the LCA, the more help is needed from the user.

To give the APR program guidance, a User Constraint file is used. The entries in

this file override any guidance derived solely from the schematics themselves. Using the

constraints file, the designer can give APR implementation hints such as where to place

certain CLBs, which type of routing resources to use for the timing-critical signals, which

blocks and nets to freeze before placement and routing of additional circuitry, and which

areas of the LCA to leave open. Taking full advantage of constraint files requires a very

detailed knowledge of both the LCA architecture and the capabilities of the Xilinx software

package. Xilinx has issued many Application Notes about its products. They should be

studied carefully to realize high performance designs. (Xilinx, 1991, p. 2-12)

Constructing the constraints file was a very tedious process. Because the

XNFMAP program eliminates some unnecessary logic and attaches cryptic names to all the

nets, it is necessary to study the cross-reference report (CRF) file along with the schematic

diagram to discern which signal is which. The new net names were used in the constraints

file. The solution to this tedium is to name all the critical nets as the schematic diagrams are

entered. The names are retained throughout the implementation flow.

5. Functional Verification of Back-Annotated Design

a. LCA2XNF

If a placed and routed LCA file is translated to an XNF file with the LCA2XNF

program, then the XNF file contains worst-case block and net delays. In that case, the XNF

file is called back-annotated and can be simulated in QuickSim to verify timing

requirements. (Xilinx, 1991, p. 4-1) The same TESTBENCH was used as for the functional

verification of the design before back annotation. The TESTBENCH for both versions

(before and after annotation) and an output waveform are in Appendix F.

54

b. LCAjriMING

This program takes a placed and routed LCA file and produces a new

SIMSHEET which QuickSim uses for input. (Messa, 1991 p. 67)

C. PIPELINING

There were three places where propagation delays needed improvement: (1) in the

8-to-l multiplexors of DATAREG, (2) in GENERATOR, and (3) in the SEQUENCER

output. The Xilinx development system divides an 8-to-l multiplexor into two levels of

CLBs that contribute two block delays plus routing delays. Message bits shift into

SHIFTREG and sit there until the "load" input to DATAREG is active (low), and then they

are shifted in parallel into DATAREG on a falling clock edge. Since GENERATOR is

combinational, these changes at the output of DATAREG travel through GENERATOR to

the input of SEQUENCER. At the following rising edge, SEQUENCER updates its state

machine. Thus, only one half of a clock cycle was available for the new logic levels to get

through GENERATOR. This path consisted of four levels of combinational CLBs between

two registered ones making it the longest combinational path, or the critical path of the

design.

To eliminate DATAREG's input multiplexors and to improve GENERATOR'S

combinational delay, SHIFTREG and DATAREG were replaced by a serial-to-parallel shift

register with a clock enable input, and pipeline registers with a clock enable were added to

GENERATOR. With the same control signals, the behavior was preserved. The "load"

signal which formerly was an input to DATAREG, is now the "calc" (short for "calculate

modulo-2 sums") input to GENERATORDFF. The "load" signal enables the pipeline

registers to save a partial sum. The pipeline registers in GENERATORDFF now hold the

input to SEQUENCER while the shift register performs both DATAREG's and

SHEFTREG's former functions. The shift register now receives ^-tuples and holds them as

55

input for GENERATORDFF. The two levels of combinational delay due to the 8-to-l

multiplexors is gone, and the pipeline registers added to GENERATOR were available as

flip-flops in the CLBs that realized GENERATOR initially. Therefore, no additional routing

delay was added by incorporating the pipeline registers The schematic of the new pipelined

version of GENERATOR, called GENERATORDFF, is in Appendix E. Pipelining also

improved the throughput of SEQUENCER'S output stage. The schematic of the new

SEQUENCER, dubbed PIPESEQUENCER, is in Appendix E.

1. Pipeline Register Placement

It is fairly simple to look at the schematic diagram of a block and see how the Xilinx

Development System will partition the circuitry into CLBs. This was done to find

appropriate locations for pipeline registers in GENERATORDFF and PIPESEQUENCER.

Look at the GENERATOR block as an example. Examining one AND/XOR tree and

remembering that each CLB look-up table can have four or five inputs, it is plain that the

partitioning will occur as in Figure 7.1. Each tree consists of five CLBs arranged in two

levels. The first level has four CLBs (one of which is delineated by the box) that feed into

the second level which has only one CLB (also in a box). This was verified in the Xilinx

XACT tool, which allows the user to navigate through the LCA to see how APR routed

signals and configured CLBs. The pipeline registers are added to the schematic at the point

shown in the figure so the next APR run will produce the same CLB partitioning but with

the CLB outputs registered. Thus, pipeline registers are added without incurring any

additional delay since the flip-flops reside in the CLBs anyway and just need to be wired in.

The GENERATORDFF schematic shows the register placement. The "mod2_sums(6:l)"

lines also go through a pipeline register which is in the PIPESEQUENCER schematic.

56

a

v>
I

XJ
o

0
C/3

I

r\r\

Z_ J-

7 ,7

O

&
OH

r^AAr^r^r^

z. x

J? z.

JL J- J-

J. z z. 7

Ö
o

Ü

>

c

a
at

&
00

M
C
'c
"«5
a.

60 c

V
4>
Q

X'
r»'
£
3
00

57

D. DESIGN PERFORMANCE

1. Propagation Delay Estimation

Signal paths in LCA devices generally start at the output of a flip-flop and travel

through one or more levels of combinational CLBs to the input of another flip-flop.

Therefore, the signals traveling the path are subject to the clock-to-output delay of the

source flip-flop, routing delay between CLBs, combinational CLB propagation delay, and

set-up time of the destination flip-flop. For estimation purposes, assume 18ns, total, for

clock-to-output delay of the source registered CLB plus the set-up time for the destination

registered CLB. Assume 12ns for each combinational CLB in the path including routing

between CLBs. Since the XC3064 is one of the larger devices in the Xilinx XC3000 family,

routing delays can be large. Therefore, assume an additional 3 ns to give 15ns of

combinational delay per non-registered CLB. (New, 1994, p. 8-36)

According to Xilinx's speed estimation method, the encoder design should be

capable of a clock rate of about 15 MHz. With the addition of pipeline registers in the

datapath, no datapath CLB is combinational. However, there is a combinational CLB at the

output of both the LOADER and IN_ENBLE state machines that hurt performance. This

problem should be addressed in future versions of this design. Thus, remembering that the

control blocks and datapath blocks are clocked on opposite edges, the critical path has a

delay of 15ns + 18ns or 33ns. Signals must traverse this delay in one half of the clock

period; hence, the maximum clock rate of about 15 MHz.

2. APR Iterations

The programmable convolutional encoder was placed and routed three times. After

each run, the back annotated LCA file was simulated in QuickSim, and the output

waveforms were checked against the waveforms generated in the high level behavioral

simulations. To estimate the maximum speed of the design, the clock period was repeatedly

58

decreased until the waveforms no longer matched. This value of the clock period is an

estimate of the minimum clock period or maximum clock rate of the design. The maximum

clock rate of the non-pipelined version is about 9.7 MHz.

The pipelined version of the encoder was placed and routed twice, with and without

a user constraints file. Without the constraints file, the clock rate dropped to about 8.3 MHz

showing that pipelining by itself does not necessarily improve performance. The routing

delays must also be minimized by using a constraint file to tell the APR program which

signals are timing critical. With the constraints file, APR produced an implementation with a

maximum clock rate of about 11.1 MHz - not much of an improvement.

Most likely, another APR run is needed which uses a very detailed constraint file

that allows APR to do almost nothing for itself. The file will include locations of CLBs,

which type of routing resource to use for the most critical signals, etc. Since I/O pin

assignments affect placement and routing, all signals which were originally brought out to

I/O pins for monitoring purposes should be eliminated

E. AUTOLOGIC

Ultimately the Mentor Graphics AutoLogic tool was not useful. The intent was to

use it to generate schematics to partition into units that would fit in Xilinx CLBs. Even

though the ECE Department does not have the Xilinx libraries for Autologic to use, the

actual schematics generated were important only to gauge fan-in logic to CLBs, making the

libraries unnecessary. The idea was to partition the design into blocks with five or fewer

inputs and enter the modified schematics into the old Mentor Graphics suite that has the

Xilinx library. Unfortunately, when a CAD tool automatically produces output, the designer

is to some extent giving up control over the outcome of the design process. This became

quite apparent when Autologic produced schematics that were very difficult to decipher.

Tracing through some of the logic showed that the CAD tool had implemented lots of

59

redundant logic with long signal paths, defeating the purpose of one-hot encoding. Further,

the schematics were very complicated and disorganized. At least when the designer draws

his own schematic, he can organize it in his own accurate, intelligible way. Many menu

permutations were tried, but there was almost no improvement. Manually translating VHDL

source code into the proper schematic diagrams proved to be much more efficient and

useful.

F. BACK ANNOTATION INTO VHDL CODE

One of the original reasons for using VHDL in this thesis was to back annotate timing

information into the VHDL code. However, after using the Xilinx development system to

examine the completed placement and routing inside the LCA, it became obvious that back

annotation would not be worth the long, tedious process required. It is very inefficient and

error prone to navigate through a routed LCA attempting to pick out the appropriate delays

for back annotation. The only reason to do back annotation at all is for detailed

documentation of a particular implementation of a design. To back annotate for VHDL

simulation purposes is simply doubling the designer's work because the design can be back

annotated into the Quicksimll simulator anyway. As Steve Carlson of Synopsis, Inc. points

out (Harr, 1991, p. 149), back annotating timing information into the VHDL code ties the

VHDL description to a specific technology, defeating one of the most important reasons for

using VHDL: to have an accurate description or specification of system behavior that is

completely independent of the target technologies in which the design can be implemented.

The timing information (setup and hold times, clock rates, etc.) is different for each

technology. It is up to the designer to guarantee that the design behaves according to the

VHDL code within the particular timing constraints imposed by the specific target system

and target technology.

60

vm. CONCLUSION

Convolutional encoding is a Forward Error Correction (FEC) technique used in

continuous one-way and real time communication links. It can provide substantial

improvement in bit error rates so that small, low power, inexpensive transmitters can be

used in such applications as satellites and hand-held communication devices. This thesis

documents the development of a programmable convolutional encoder implemented in an

Field Programmable Gate Array (FPGA) and capable of coding a digital data stream with

any one of 39 convolutional codes. It has a simple microprocessor interface, a register file

for storage of code parameters, a test circuit, and a maximum bit rate of about 15 Mbits/s.

The VHSIC Hardware Description Language (VHDL) is used to model abstract

behavior and to define relationships between building blocks before hardware

implementation in an XC3064 Logic Cell Array (LCA). An LCA is a type of FPGA made

by Xilinx, Inc. Special design techniques like one-hot state assignment, pipelining, and

exploitation of redundant states are employed to tailor the hardware to the LCA

architecture. Because an FPGA is used for the hardware implementation, the design can be

changed or expanded conveniently in the lab. In particularly flexible systems, several

encoder designs can be stored in the system RAM, each one being downloaded into the

FPGA under different circumstances.

More work can be done on this programmable convolutional encoder design. The bit

rate can be increased substantially by decreasing the combinational delays in the paths of the

"en" and "load" control signals. More sophisticated use of User Constraint files along with

various options available in the Xilinx CAD programs should add to the performance

improvement. Xilinx has published many application notes, all of which should be studied

very closely to get the full benefit that the LCA architecture offers. One in particular,

61

entitled Advanced Design Methodology (Simpson, 1989), covers methods of independently

placing and routing building blocks of the design. It is reasonable to expect the output bit

rate to approach 30 Mbits/s after those more sophisticated techniques are employed. A

register based FIFO memory can also be implemented on the LCA. This was mentioned in

Chapter III, and will make the programmable encoder easier to integrate into other systems.

The top-down design paradigm proved to be very beneficial for this design. Several

behavioral bugs were discovered and fixed at the beginning of the design cycle that would

have been difficult to find in the later stages. More importantly, it forced a detailed

definition of system partitioning and building block interaction before hardware became a

factor in the design. Once all of the behaviors were defined, the hardware was easier to

derive, and the effort was focused on optimizing the hardware design for the Xilinx LCA

architecture. Actually implementing the design in a Xilinx LCA is easy if performance is not

a significant concern; the APR program does all of the work and produces a mediocre

result. If high performance is a concern, however, the designer must take control of the

place and route process via User Constraint files, command line options available with APR,

and advanced techniques outlined in the Xilinx application notes.

62

APPENDIX A

VHDL SOURCE CODE

A. SHIFTREG

LIBRARY MGC_PORTABLE;
USE MGC_PORTABLE.QSIM_LOGIC.ALL;
USE MGC_PORTABLE.QSIM_RELATIONS.ALL;

» This is the source code for the SHIFTREG block which is a 4-bit serial to parallel shift
~ register. It takes serial message bits as input at "serialjnput" and provides them to the
-- DATAREG block in parallel. It is enabled by "en" from the IN_ENBLE block.

ENTITY shiftreg IS
PORT (parallel_outl OUT BIT

parallel_out2 OUT BIT
parallel_out3 OUT BIT
parallel_out4 OUT BIT
serialinput IN BIT;
clk,reset,en IN BIT);

END shiftreg;

ARCHITECTURE archl OF shiftreg IS
SIGNAL q : BIT_VECT0R(4 DOWNTO 1);

BEGIN
PROCESS(clk, reset)
BEGIN

IF (reset = '0') THEN ~ asynchronous reset.
q <= "0000";

ELSIF (clkEVENT AND elk = '0') THEN
IF (en = T) THEN -- if "en" is active, shift contents

— by 1 bit position and input new
— message bit from "seriaHnput".

q(4) <= q(3)
q(3) <= q(2)
q(2) <= q(l)
q(l) <= serialinput;

END IF;
ELSE
END IF;

END PROCESS;

parallel_outl <= q(l); - outputs of this block are

63

parallel_out2 <= q(2);
parallel_out3 <= q(3);
paraIlel_out4 <= q(4);

- the outputs of the flip-flops.

END archl;

64

B. DATAREG

LIBRARY MGC_PORTABLE;
USE MGC_PORTABLE.QSIM_LOGIC.ALL;
USE MGC_PORTABLE.QSIM_RELATIONS.ALL;

» This is the source code for the DATAREG block which shifts k-tuples
- through an 8-bit register. It provides the parallel output of the
-- register to the GENERATOR block.

ENTITY datareg4 IS
PORT (load : IN BIT; ~ enables k-tuple loading into DATAREG

k : IN BITJVECTOR (2 DOWNTO 0); -- defines message bits/k-tuple
kvect: OUT BITJVECTOR (7 DOWNTO 0); -- parallel output of DATAREG
reset: IN BIT; -- system reset
elk : IN BIT; - system clock
in7, in6, in5, in4 : IN BIT); - parallel inputs from SHIFTREG

END datareg4;

ARCHITECTURE archl OF datareg4 IS
SIGNAL d : BITJVECTOR (7 DOWNTO 0); - D input to flip-flop
SIGNAL q : BITJVECTOR (7 DOWNTO 0); » Q output of flip-flop

BEGIN

- Each D input gets the Q output of a different flip-flop depending on
- the number of bits in a k-tuple.

d(0) <= q(l) WHEN (k = "001") ELSE - 1 bit/k-tuple, 1-bit shift
q(2) WHEN (k = "010") ELSE ~ 2 bits/k-tuple, 2-bit shift
q(3) WHEN (k = "011") ELSE ~ 3 bits/k-tuple, 3-bit shift
q(4); ~ 4 bits/k-tuple, 4-bit shift

d(l) <= q(2) WHEN (k = "001") ELSE
q(3) WHEN (k = "010") ELSE
q(4) WHEN (k = "011") ELSE
q(5);

d(2) <= q(3) WHEN (k = "001") ELSE
q(4) WHEN (k = "010") ELSE
q(5) WHEN (k ="011") ELSE
q(6);

d(3) <= q(4) WHEN (k = "001") ELSE

65

q(5) WHEN (k = "010") ELSE
q(6) WHEN (k = "011") ELSE
q(7);

d(4) <= q(5) WHEN (k = "001") ELSE
q(6) WHEN (k = "010") ELSE
q(7) WHEN (k = "011") ELSE
in4;

d(5) <= q(6) WHEN (k = "001") ELSE
q(7) WHEN (k = "010") ELSE
in5; — more than 2 bits/k-tuple

d(6) <= q(7) WHEN (k = "001") ELSE
in6; ~ more than 1 bit/k-tuple

d(7) <= in7; -- d(7) always gets in7

kvect <= q; ~ Q outputs of flip-flops form
~ parallel output of DATAREG.

PROCESS (elk, reset)
BEGIN

IF (reset = '0') THEN - asynchronous clear
q <= "00000000";

ELSIF (clkEVENT AND elk = '0') THEN -- clock on falling edge only if
IF (load = '0') THEN -- Q outputs get D inputs

q<=d; ~ only if "load" input is low.
END IF;

ELSE
END IF;

END PROCESS;
END archl;

66

C. GENERATOR

LIBRARY MGCJPORTABLE;
USE MGC_PORTABLE.QSIM_LOGIC.ALL;
USE MGC_PORTABLE.QSIM_RELATIONS.ALL;

-- The GENERATOR block provides 6 bits in parallel to the SEQUENCER block.
- Each bit is the linear combination (bitwise AND followed by modulo-2 sum)
— of a connection vector and the contents of the DATAREG block.

ENTITY generator IS
PORT (gl, g2, g3, g4, g5, g6 : IN BIT_VECT0R(7 DOWNTO 0); - connection vectors

k_vect: IN BIT_VECT0R(7 DOWNTO 0); - parallel output of DATAREG
mod2_sums : OUT BIT_VECT0R(6 DOWNTO 1)); -- output of GENERATOR

END generator;

ARCHITECTURE archl OF generator IS
BEGIN

PROCESS(gl, g2, g3, g4, g5, g6, k_vect)
VARIABLE sum : BITVECTOR (6 DOWNTO 1); -- each bit is a linear combination.

— "tempx"s hold result of bitwise AND.
VARIABLE temp : BIT_VECTOR (7 DOWNTO 0);
VARIABLE temp2 : BIT_VECTOR (7 DOWNTO 0);
VARIABLE temp3 : BIT_VECTOR (7 DOWNTO 0);
VARIABLE temp4, temp5, temp6 : BIT_VECTOR (7 DOWNTO 0);

BEGIN

temp2 := g2 AND k_vect;
temp3 := g3 AND k_vect;
temp4 := g4 AND k_vect;
temp5 := g5 AND k_vect;
temp6 := g6 AND kvect;

— sum of bitwise AND between kvect and gl.
sum(l) := templ(7) XOR templ(6) XOR templ(5) XORtempl(4) XOR

templ(3) XOR templ(2) XOR templ(l) XOR templ(O);

— sum of bitwise AND between k_vect and g2.
sum(2) := temp2(7) XOR temp2(6) XOR temp2(5) XOR temp2(4) XOR

temp2(3) XOR temp2(2) XOR temp2(l) XOR temp2(0);

~ sum of bitwise AND between k_vect and g3.
sum(3) := temp3(7) XOR temp3(6) XOR temp3(5) XOR temp3(4) XOR

67

temp3(3) XORtemp3(2) XOR temp3(l) XOR temp3(0);

~ sum of bitwise AND between kvect and g4.
sum(4) := temp4(7) XOR temp4(6) XOR temp4(5) XOR temp4(4) XOR

temp4(3) XOR temp4(2) XOR temp4(l) XOR temp4(0);

— sum of bitwise AND between k_vect and g5.
sum(5) := temp5(7) XOR temp5(6) XOR temp5(5) XOR temp5(4) XOR

temp5(3) XOR temp5(2) XOR temp5(l) XOR temp5(0);

— sum of bitwise AND between k_vect and g6.
sum(6) := temp6(7) XOR temp6(6) XOR temp6(5) XOR temp6(4) XOR

temp6(3) XOR temp6(2) XOR temp6(l) XOR temp6(0);

mod2_sums <= sum; ~ output is the six modulo-2 sums from above.

END PROCESS;

END archl;

68

D. IN.ENBLE

LIBRARY MGC_PORTABLE;
USE MGC_PORTABLE.QSIM_LOGIC.ALL;
USE MGC_PORTABLE.QSIM_RELATIONS.ALL;

— The IN_ENBLE block enables the SHIFTREG block long enough for SHIFTREG
— to input k message bits. It inputs message bits while the SEQUENCER
— block outputs code bits.

ENTITY in_enble IS
PORT (k : IN BIT_VECT0R(2 DOWNTO 0); -- bits per k-tuple.

clk,reset load : IN BIT; ~ system clock and reset.
load : IN BIT; - "load" signal from LOADER block.
en : OUT BIT); - enable to SHIFTREG.

END inenble;

ARCHITECTURE archl OF in_enble IS
TYPE states IS (state_0, state_l, state_2, state_3, state_4);
SIGNAL state : states;

BEGIN
s:PROCESS(clk, reset)

BEGIN
IF (reset = '0') THEN - asynchronous reset.

state <= state_0;
ELSIF (clkEVENT AND elk = T) THEN - if elk has changed, and it's

CASE state IS -- now equal to' 1', THEN...
WHEN state_0 =>

IF (load = '0') THEN -- if "load" is active, go to statej.
state <=state_l;

ELSE
state <= statej); ~ stay in state_0 until "load" is inactive.

END IF;
WHEN statej =>

IF ((k = "000") OR (k = "001")) THEN
state <= statej); ~ if a k-tuple has 1 bit, go to statej).

ELSE
state <= state_2; ~ k is more than 1.

END IF;
WHEN state_2 =>

IF (k = "010") THEN - if a k-tuple has 2 bits, go to statej).
state <= statej);

ELSE

69

State <= state_3; - k is more than 2.
END IF;

WHEN state_3 =>
IF (k = "011") THEN -- if a k-tuple has 3 bits, go to state_0.

state <= state_0;
ELSE

state <= state_4; — k is more than 3.
END IF;

WHEN state_4 =>
state <= state 0; ~ k is 4 or more.

END CASE;
ELSE
END IF;

END PROCESS s;

PROCESS (state)
BEGIN

IF (state = state_0) THEN
en <= -o'; - keep SHIFTREG disabled until "load" is active.

ELSE
en <='i'; .. enable SHIFTREG, input serial message bits.

END IF;
END PROCESS;

END archl;

70

E. LOADER

LIBRARY MGC_PORTABLE;
USE MGC_PORTABLE.QSIM_LOGIC.ALL;
USE MGC_PORTABLE.QSIM_RELATIONS.ALL;

ENTITY newload IS
PORT (n : IN BIT_VECT0R(2 DOWNTO 0);

clk,reset : IN BIT;
load : OUT BIT);

END newload;

» This is the source code for the LOADER block. LOADER outputs "load" which enables
- DATAREG to input a k-tuple in parallel. It also synchronizes "en" which is the
- output of the IN_ENBLE block that allows SHIFTREG to take serial data.

ARCHITECTURE archl OF newload IS
TYPE states IS (state_l, state_2, state_3, state_4, state_5, state_6);
SIGNAL state: states;

BEGIN
s:PROCESS(clk, reset)
BEGIN

IF (reset = '0') THEN ~ asynchronous reset.
state <=state_l;

ELSIF (clk'EVENT AND elk = T) THEN -- clock on rising edge.
CASE state IS

WHEN state_l => ~ go to state_2 regardless of n().
state <= state_2;

WHEN state_2 =>
IF ((n = "000") OR (n = "001") OR (n = "010")) THEN

state <= state_l; — go to state_l if each n-tuple has 2 bits,
ELSE -- defaults to n = 2 if n < 2.

state <= state_3; — n has more than 2 bits.
END IF;

WHEN state_3 =>
IF (n = "011") THEN ~ go to state_l if each n-tuple has 3 bits.

state <=state_l;
ELSE

state <= state_4; — n-tuple has more then 3 bits.
END IF;

WHEN state_4 =>
IF (n = " 100") THEN ~ go to state_l if each n-tuple has 4 bits,

state <=state_l;

71

— n-tuple has more than 4 bits.

— go to statel if each n-tuple has 5 bits.

— n-tuple has 6 bits,
-- defaults to 6 if n > 6.

ELSE
state <= state_5;

END IF;
WHEN state_5 =>

IF (n = "101") THEN
state <=state_l;

ELSE
state <= state_6;

END IF;
WHEN state_6 =>

state <=state_l;
END CASE;

ELSE
END IF;

END PROCESS s;

PROCESS (state)
BEGIN

IF (state = state_l) THEN
load <= '0'; — "load" output is active in state_l.

ELSE
load <= T; - "load" is inactive in all other states.

END IF;
END PROCESS;

END arch 1;

72

F. SEQUENCER

LIBRARY MGC_PORTABLE;
USE MGC_PORTABLE.QSIM_LOGIC.ALL;
USE MGC_P0RTABLE.QSIM_RELATI0NS.ALL;

ENTITY sequencer3 IS
PORT (n : IN BIT_VECT0R(2 DOWNTO 0);

mod2_sums : IN BIT_VECT0R(6 DOWNTO 1);
serial_output: OUT BIT;
elk, reset : IN BIT);

END sequencer3;

~ This is the source code for the SEQUENCER block. Depending on the
~ value of n, SEQUENCER selects the appropriate bits from "mod2_sums"
~ and outputs them through "serialoutput" on the negative clock edge.

ARCHITECTURE archl OF sequence^ IS
TYPE states IS (state_0, state_l, state_2, state_3, state_4, state_5, state_6);
SIGNAL state: states;
SIGNAL serial: BIT := '0';

BEGIN
s:PROCESS(clk, reset)
BEGIN

IF (reset = '0') THEN ~ asynchronous reset.
state <= state_0;

ELSIF (clk'EVENT AND elk = T) THEN - state machine transitions on
CASE state IS - rising clock edge.

WHEN state_0 => ~ go to state_l regardless of the inputs.
state <=state_l;

WHEN state_l => ~ go to state_2 regardless of the inputs.
state <= state_2;

WHEN state_2 =>
IF (n="000H OR n="001" OR n="010") THEN-- if 2 bits/n-tuple, go to statej,

state <= state_l; ~ n < 2 defaults to 2.
ELSE

state <= state_3; ~ more than 2 bits/n-tuple.
END IF;

WHEN state_3 =>
IF (n = "Oil") THEN

state <= state_l; ~ 3 bits/n-tuple.
ELSE

state <= state_4; ~ more than 3 bits/n-tuple.

73

END IF;
WHEN state_4 =>

IF (n = " 100") THEN
state <= state_l; ~ 4 bits/n-tuple.

ELSE
state <= state_5; - more than 4 bits/n-tuple.

END IF;
WHEN state_5 =>

IF (n = "101") THEN
state <= state_l; - 5 bits/n-tuple.

ELSE
state <= state_6; ~ more than 5 bits/n-tuple.

END IF;
WHEN state_6 =>

state <= state_l; ~ 6 bits/n-tuple.(n>6 defaults to 6).
END CASE;

ELSE
END IF;

END PROCESS s;

~ mux structure that uses state flip-flops to select bits of "mod2_sums" for output.
WITH state SELECT
serial<= mod2_sums(l) WHEN state_l,

mod2_sums(2) WHEN state_2,
mod2_sums(3) WHEN state_3,
mod2_sums(4) WHEN state_4,
mod2_sums(5) WHEN state_5,
mod2_sums(6) WHEN state_6,
•0' WHEN state_0;

PROCESS (elk, reset)
BEGIN

IF (reset = '0') THEN ~ asynchronous reset.
serial_output <= '0';

ELSIF (clkEVENT AND elk = '0') THEN
serial_output <= serial; ~ send code bits on falling edge of clock.

END IF;
END PROCESS;

END arch 1;

74

G. HANDSHAK

LIBRARY MGC_PORTABLE;
USE MGC_PORTABLE.QSIM_LOGIC.ALL;
USE MGC_PORTABLE.QSIM_RELATIONS.ALL;

- HANDSHAK is a small state machine inside the REGFILE block.
— It provides the handshaking mechanism for the data bus.

ENTITY handshak IS
PORT (elk, reset:

AS
ASout
DTACK

END handshak;

IN BIT; -- system clock and reset.
IN BIT; ~ address strobe from microprocessor (active low).
OUT BIT; ~ enable signal for loading registers in DATAREG.
OUT BIT); ~ response to AS back to microprocessor (active low).

ARCHITECTURE archl OF handshak IS
= "01";
= "11";
= "00";
= "10";

CONSTANT statej: BIT_VECTOR
CONSTANT state_2: BIT_VECTOR
CONSTANT state_3: BIT_VECTOR
CONSTANT state_4: BIT_VECTOR := "10"; -- not used
SIGNAL state : BIT_VECTOR (1 DOWNTO 0);

BEGIN
a:PROCESS(clk, reset)

BEGIN
IF (reset = '0') THEN ~ asynchronous reset.

state <=state_l;
ELSIF (clk'EVENT AND elk = T) THEN -- clock on rising edge.

CASE state IS
WHEN statej =>

IF (AS = '0') THEN
state <= state_2;

ELSE
state <=state_l;

END IF;
WHEN state_2 =>

state <= state_3;
WHEN state_4 =>
WHEN state_3 =>

IF (AS = '1') THEN
state <=state_l;

ELSE
state <= state_3;

if AS is active, go to state_2.

stay in state_l until AS is active.

- go to state_3 regardless of AS.
~ state_4 is not used.

when AS becomes inactive, go to state_l.

- stay in state_3 until AS is inactive.

75

END IF;
END CASE;

ELSE
END IF;

END PROCESS a;

b:PROCESS (state)
BEGIN

IF (state = state_l) THEN - state_l is the idle state, so
ASout <= '0'; -- no registers are enabled, and
DTACK <=' 1'; -- DTACK is inactive.

ELSIF (state = state_2) THEN
ASout <= '1'; ~ enable a register for 1 cycle.
DTACK <= '1';

ELSIF (state = statej) THEN
ASout <= '0'; - disable the register.
DTACK <= '0'; - tell microprocessor that data has

ELSE - been accepted.
END IF;

END PROCESS b;

ENDarchl;

76

H. STIMULUS

LIBRARY MGC_PORTABLE;
USE MGC_PORTABLE.QSIM_LOGIC.ALL;
USE MGC_PORTABLE.QSIM_RELATIONS.ALL;

— The STIMULUS block provides the test message "info_vector" to the
~ encoder. The connection vectors and k and n are changed manually
~ to simulate different codes and constraint lengths. Of course, this
— file should be recompiled and updated in the testbench TEST7.
— This block takes "enM as an input from the INENBLE block and indexes
— through the bits of the test message only when "en" is high.

ENTITY stimulus IS
PORT (k: OUT BIT_VECT0R(2 DOWNTO 0); - bits in a k-tuple.

n: OUT BIT_VECT0R(2 DOWNTO 0); -- bits in an n-tuple.
elk, reset: OUT BIT; — asynchronous reset, system clock.
serialinput: OUT BIT; ~ test message output.
~ connection vectors.
Gl, G2, G3, G4, G5, G6: OUT BIT_VECT0R(7 DOWNTO 0);
en: IN BIT); -- "en" from IN_ENBLE block.

END stimulus;

ARCHITECTURE archl OF stimulus IS

SIGNAL clock,rst,flag : BIT := '0';
SIGNAL kjndex : INTEGER := 17; -- index for traversing bit-by-bit

~ through infovector.
CONSTANT info_vector : BIT_VECTOR (17 DOWNTO 1) := "10011101010000000";

BEGIN
rst <= T AFTER Ons, - resets chosen arbitrarily to make sure the encoder functions

'0' AFTER 175ns, — properly after an asynchronous reset.
T AFTER 375ns,
•0'AFTER 11375 ns,
T AFTER 11575 ns;

. reset <= rst;

k<="001";
n<="010";

Gl<= "10001101";

77

G2<= "10101001";
G3 <= "10100010"
G4<= "10011110"
G5<= "10010011";
G6<= "10111101";

c:PROCESS
BEGIN

clock <=,0';
WAIT FOR 50ns;
clock <= T;
WAIT FOR 50ns;

END PROCESS c;

elk <= clock;

PROCESS
BEGIN

WAIT ON clock, rst;
IF (rst = '0') THEN

k_index<= 17;
seriaMnput <= '0';
WAIT FOR 5 ns;

ELSIF (clock = '1') THEN
IF (en ='1') THEN

- Generate clock (arbitrarily chosen at 10 MHz).

— If reset is active,
— set index to first bit,
— and zero the output.
— Update signals.
~ Otherwise, if rising clock edge,
— and "en" from IN_ENBLE is active, then

IF (kjndex = 1) THEN ~ check the index. If it is already at 1,
kjndex <= 1; ~ then keep it there and
flag <= '1'; -- set a flag.

ELSE ~ If the index is not at 1,
kjndex <= kjndex-1; - decrement it (go to next bit).

END IF;
ELSE

IF (kjndex = 1 AND flag = '1') THEN -- If "en" not active, and the final bit was
kjndex <= 17; -- transmitted last time "en" was active (flag=l), then set
flag <= '0'; - index to first bit and reset the flag.

END IF;
END IF;
WAIT FOR 5 ns; -- Update signals.
serialjnput <= infoj/ector(k_index); ~ Send current bit of infoj/ector to output.
WAIT FOR 5 ns; -- Update signals.

END IF;
END PROCESS;

END arch 1;

78

APPENDIX B

BEHAVIORAL TESTBENCH AND TIMING DIAGRAMS

A. BEHAVIORAL TESTBENCH

B. TIMING DIAGRAMS

1. Figure B.l.

Timing diagram for a rate 1/6 code.

2. Figure B.2.

Timing diagram for a rate 1/2 code.

3. Figure B.3.

Timing diagram for a rate 3/5 code.

4. Figure B.4.

Timing diagram for a rate 2/3 code.

79

0

0

O

CO
f ¥ ? V?f \

0

oo

<3:

<c

OO

CwXO
GOSGXI30

TTF=

T

i

.J

fl

00

rWnbr

• • • •

C!
LL.
at

} i
»hi

00 0
s~< ,. c j_» XI o o> <D 3 CO

CO a
<\l CD c ^ t_ ■ —

00
o —
-• Ü

80

czr

o
o

o
o

Ä

X

X

xx
n ... x x

x x
o
o
00
o

o
M

o
o

*P

s

60
.2 ■3

1

£
eo

81

82

♦ ♦ ♦ * • P 4 + ♦J IDS
© o 1 «ft
o o

>< >< 1—
♦ ♦ 4 4 ♦ ♦ 4 ♦ P

j 1 o
4 ♦ ♦ ♦ ♦ ♦

lA 5

+ Ps
1 1 m

>< r>S 1 '
♦ ♦ 4- 4 _t_l * * 4 4 "-^n

i ©

♦ 4 ♦ ♦ ♦ 4

0 M

+ L_ o
1 **

i— »
1 CM

4 4 4 ♦ ♦ ♦

n n
4 P

1 °
♦ + ♦ 4 ♦ ♦ ♦ + ■ 1 O

1 1 CM
 | CM

♦ 4 4 ■*■ + ♦ <•> * 4 P
rn ><

 1 °
4 ♦ ♦ + + -fc_ + + + 1 » o

_ 1 c
r H

1 a
|—' c

4 ♦ 4 4 ♦ L-¥-

* o
*

1 B
1 ,, ,, ■*« u H

ri >< 1 °
4 4 ♦ 4 + ♦ ♦ + 4 v | o

i-^—1 CM
1 CO l——t rH

cz
4 ♦ ♦ ♦ ♦ ♦

o *o

4 ♦ ♦ 4 ♦ 4 m !
|~4~ O
1 , oo
 | oo w
[..,,.. •o 1 o

4 4 4 ♦ ♦ 4 +

*
4 p

. 1 o a
4 + ♦ *-r~l 4 + * + Tn o

Q
1 M?

| MT CO
b* J o f «M

* ♦ ♦ ♦ ♦ ♦ ♦ ♦ 4 ♦J i
 1 U)

o O r"~" CB y >< . TITITI o
>< Ä 4

i ° •a

— — u B TJ *> — — u M c
oo«vaaoiH3 «H

F- « ^ o a •• •• o,
« CM 0 w B t» «> 1

o
■^

— ~- fc v^ -H ~ — rH l-H
x e «» i ii • ■
^ ^ <H 0 E -w

« • 9 h c*>
-rt > • C
Mil«
S X CM ~-

CO
Ö 5 " s

6 ?n

83

3J ÄSSJ

6

o

Uj

A

*

kJ nc:

i (0 j ■.--.,

+ •*

£

>< >< .ra
o

X X
o o • ■
MM«

5 d * J t
I« •

■* >. H
• M

1

o o

£

2 '•&
60
c
s
H

cd

3>
.E

84

APPENDIX C

STATE DIAGRAMS FOR LCA
IMPLEMENTATIONS OF STATE MACHINES

A. IN_ENBLE

Figure C.l. State diagram for INENBLE (one-hot, redundant state sO).

B. LOADER

Figure C.2. State diagram for LOADER (one-hot, redundant state si).

C. SEQUENCER

Figure C.3. State diagram for SEQUENCER (one-hot, redundant state si).

85

Figure C.l. State diagram for IN_ENBLE (one-hot, redundant state sO).

Tigure C.2. State diagram for LOADER (one-hot, redundant state si)

86

!101/m(5)

xxx/m(l) /ixx/mO) V /

(Si"') f sl,, \^-^010/m(2) /I010/m(2)

011/m(3)

I100/m(4)

Figure C.3. State diagram for SEQUENCER (one-hot, redundant state sl).

87

APPENDIX D

SCHEMATIC DIAGRAMS FOR NON-PIPELINED
PROGRAMMABLE CONVOLUTIONAL ENCODER

A. PROGRAMMABLE CONVOLUTIONAL ENCODER

B. ENCODER

C. SHD7TREG

D. DATAREG

E. GENERATOR

F. SEQUENCER

G. LOADER

H. IN_ENBLE

I. REGFILE

J. HANDSHAK

K. MUX

L. TEST

88

CO

CO
LU
Q
O
CJ

CC

o

o

o
LJ

LU

cr
CO
CD
O
CO
Q_

a a D
c •• 0.
3 r* 1
0), w I—H

1 ** o Jtf

CO O -H -D Ü

T3 0 L O 0
0 3 oco ■4-»

c .* COO—i •o

& A m d

D
O
C_)

UJ

) DO D B D
! £ iC £ r» r- O -* «CD - • - -

ft • .M f. ft

CD
LU
CC

IQDOOOi

CO
LU

A

X

ffi O VI

^^ J**J ~-*J
Q «O mr
• ■ uo •■■•
r^ a r-<\j
W• c » * *
t- o*.
0 -JO <-» 00
ü ■D-
0 0

>, a
-•->
a
a

a
c

89

CO

to
c

1
CM
"D
0
£

6

3 A f""

c
o
0

T3
O

C O

6 A g

DC
O

CX
CC

DC
ÜJ
U
z
UJ

o
Is « -
0 —
c c

LÜ
Q
O
LJ

LÜ

LJ
o to CD CD to ea «

o
QC

cr
o

• T3 j ■ c i~ca in a"
• o c c c c

3 3 3 3

"•I • "•

• ■ "■
t L L -
iti:

i
j
-1 :

5 Q Q Q 5 Q S
r- r— r- r- r- r- CM

~ CM cn =r to to .*

^s A 1°
CM

C

90

•-• CM co

3 3

°l °l
3
Q

0 o o o
L C L C
O O O O a a a a

ö ö Ö 0

CD
LU
GC

LL_

CO

a c_i (j

■>->

3 a c

C JX -»
0 *■-• o

O (0
ID
L

91

clkO-

loodO-

Kiz-.mo-

inlJO-

inSO-

lnBD-

ln70-

resetO—

fc

DRTRREG

m n

►k_w»ctC7:0)

92

CO
o
CE
CO
LÜ

LU
CD

M
i if i ir ■ u 11

ifffie

ÖQQÖÖÖÖÖ

VVVVVVtVI

,ßl

ßÖOOQÖßö

SL ^ V v v y. y

pSfffln

flÖäüfifififl

\\\\\\\\

4jp=

ÖÖOOOÖO0

\S\'i\,i\S

M^L

\ \ \ i_i XJk
s s

1 "

93

LÜ
LJ

LU

a
LU
CO

OT

^

s\

\JsJi.

-r*\

5-V

e u

T

42

f

T

ä
»III—I. H ■

* A /

£
■*■*■*

j,^j rj

DiQiQiQiQiE

t
■fc)

iij

■* * ■*

£ K
JL±*

T
A j?

^ -* >

-y-N

fA A

e
e ru

94

■o
c
o

cc

Q
CE
O

r*\ r~\

A

I Y- s > s

r\

s

v—<'

+ S jv* / /r + s SS/ ///

^s
f
u I

a
o

Ö
^^^ <* **

A

i
o
i

r\

A A A

CD

a

t :

AA A AA A A

a
i

A A A
J£ »» ~
—i a G>
o •

a cu
c w

c

95

ÜJ
_J
CD 6

mau

A A A A

JL ^_A

r^\ r^\

r\ r\ A

^LA JLA. JU*

~ T)
C3 O

a

M
(D-H

CD
C

96

f/ff/ftf
n

o

t^^KK^KK

CD

>>>>>>>>
■jl

r^^KK^K^ o

M n »

>>>>>>>>

"?—i*

■jl

UJ

LL

CD
UJ
CO

rtttftt

a a a u

>>>>>>>>

^ 1*

«fr

ftttttt

o

CO

— rv «n a m

a o u u ec

7?777tt?

rrrrrrrY

Tjf

tttttty

CD

to

CM m 3>

A .g

>>>>>>>>
■ii

ttttttt
LO

rw O 3- Ul M

>>>>>^>> ■j

u a:

Ö
Q

o
o

■D

97

3
O
tn

Ö

u
0

0

CE

Q

CE

A

6Ö
ffi Ü
O
L

A
a

98

3 a c

c
a
a

Ö

A

x r^\ n

öö Ö
<X tO £D

99

3 a c

L
o
n

Ö

in vi en

/yWyiyWyW ^ \ \

CO
LÜ

TTT>

Ü

G>

r-
L
0

u
a

a
a

hh A
o o

a
a
a

100

APPENDIX E

SCHEMATIC DIAGRAMS FOR PIPELINED BLOCKS
OF PROGRAMMABLE CONVOLUTIONAL ENCODER

This Appendix contains schematic diagrams only for the blocks to which pipeline

registers were added. No other block was changed. All of the other schematics are in

Appendix D.

A. ENCODER

B. GENERATORDFF

C. PD7ESEQUENCER

101

102

Li_
Q
az
o
CE
az
LU

LU

m
IIIl
Ö Ö Ö 6 IM
i_i 5—i ä^-Ä i_ik

j3-^ff Su- rft

III
Q

\\\\\\^\

rfft
mvj

W&:
till
Q Q ä C

\\W\\\\

IIJL-

SLVV^VVVk

pj
«11 lil¥

■ IJ ■ IJ< U '

Q Q C C & £
■ iji iji JI

*i\\ \ \ * * jä^i. \ \ \ \ i k ,
s i

* '

103

az
Lü

ÜJ
ZD
a
LU
CO
UJ

o_

Q
i

A-5.

t _

ß
rS

5-V

t
6 ■Q

ft •EE
<* d*/1

ff

I Jl

r "TT" "T-r TT

/\ \

6
fi,

r * +

E It

t
A

«^

* * A

V

-.r\

■*■*-* ■*■*■*

[
a a

104

APPENDIX F

HARDWARE TESTBENCHES AND OUTPUT WAVEFORM

A. SCHEMATIC DIAGRAMS

1. Testbench

Schematic diagram of testbench for the encoder before placement and routing.

2. Testbenchb

Schematic diagram of testbench for the encoder after placement and routing.

B. OUTPUT WAVEFORM

1. Figure F.l.

Output waveform for back annotated encoder design.

105

2 a c

LU
GO

CO

L
a
0)

0
HI

c
a
a

0

C
Q

DC
LU
Q
O
C_3

aooaai

 C\j
.-curatrxo —

Q
CM

A

Ui

« n 2 tn in n

* < *

r~\

TTV^
m m u

ö A
o

o
m
a

106

3 CO ^
a w Q
cm»

—. E i^
I D —

—• », *•
o I o
" (VI •

<- -a >
a o |
m c ^

ÖD

in
m
CJ

t 0

3

o
TO —
o c
o o

— a

60

wvvvvss
>>>>>>

D i—torn, a;(nrv^<oin3inr\i-BD
(E=> I I I I I I I I I I I I I kE
fLQcncnmencomi— t— t— t-»— *- *~ t-o
.liiiriruuuuuuuuj

in _J 3 3 3 3 3 3 ÜJ w UJ w UJ UJ UJ UJ

S5,mTffi>i>i>i>i>i>i>i
ZUiaOOOQO
xinoaoooo

I I ILUUJ I ItDtDtfltDtDcocotoinmLomint/itninrf =r=r=rj=j=T=rmnmfnnromcnf\irurururynjc\jry———^—------J
-JlWC^UÜUÜÜÜÜUUÜUÜOUGUÜÜUÜÜUÜÜÜUt3ÜUÜUUt3UÜt3ül3C)UÜUüUÜC3ÜUU

107

3 a **
c • 3
I I °l

«■» o I a
a "O ■*-* CM -« .

m c o • o • —>

Jqu-ir»

Dp

Up
bb

3

+ +

33

33

3
+ *

3

d

33

33

33

33

»■I ■ i ' i

EU

CQJ

(M

GJ

EM

o
o
Q

e
o
G>
1/1
(V

<D
"0
0
Ü

CO

CM
©

a
%
«/>
C
J?
w
<D

TJ

©
O
O
C c
o

CD ^
© ()
in n

A
M—

0
£

o 0
CD
O
CD

'S >

S
3
Q.

■*—

3 o

2

108

LIST OF REFERENCES

Brown, Stephen D., and others, Field-Programmable Gate Arrays, Kluwer Academic
Publishers, Norwell, MA, 1992.

Clements, Alan, Microprocessor System Design, 68000 Hardware, software, and
Interfacing, second edition, PWS-Kent Publishing Company, New York, NY, 1992.

Harr, Randolph, et al, Applications ofVHDL to Circuit Design, Kluwer Academic
Publishers, Norwell, MA, 1991.

Klein, B., "Use LFSRs to Build Fast FPGA-Based Counters," Electronic Design Magazine,
21 March 1994.

Knapp, Steven K, "Accelerate FPGA Macros with One-Hot Approach," Electronic Design
Magazine, 13 September 1990.

Lautzenheiser, Dave, and Ravel, Richard B., Introductory Application Note: Basic Design
Flow, Xilinx, Inc., San Jose, CA, 1989.

Lee, Chin-Hwa, Digital System Design Using VHDL, CorralTek, Salinas, CA 1992.

Lipsett, Roger, et al, VHDL: Hardware Description and Design, Kluwer Academic
Publishers, Norwell, M\, 1989.

Messa, Norman C, Design Implementation into Field Programmable Gate Arrays, M.S.
Thesis, Naval Postgraduate School, Monterey, California, March 1991.

New, Bernie, "LCA Speed Estimation: Asking the Right Question," The Programmable
Logic Data Book, Xilinx, Inc., San Jose, CA 1994.

Proakis, John G., Digital Communications, 2nd edition, McGraw-Hill, Inc., New York,
NY, 1989.

Simpson, Ken, and Fawcett, Brad, Design Implementation Application Note: Advanced
Design Methodology, Xilinx, Inc., San Jose, CA 1989.

Sklar, Bernard, Digital Communications, Fundamentals and Applications, Prentice Hall,
Englewood Cliffs, NJ, 1988.

109

Stallings, William, Data and Computer Communications, 4th edition, Macmillan Publishing
Company, New York, NY, 1994.

Xilinx, Inc., San Jose, CA, The Programmable Logic Data Book, 1994.

Xilinx, Inc., San Jose, CA, 2000/3000 Design Implementation Reference Guide, 1991.

110

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Cameron Station
Alexandria, VA 22304-6145

2. Library, Code 52
Naval Postgraduate School
Monterey, CA 93943-5101

3. Chairman, Code EC
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5121

4. Chin-Hwa Lee, Code EC/Le
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5121

5. Herschel H. Loomis, Code EC/Lm
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5121

6. Andrew H. Snelgrove
744-D Providence Ave.
Ventura, CA 93004

111

